A long chain aliphatic sulfoxide can be used as an extractant.It can extract almost all metallic ions which can be extracted by tributylphosphate (TBP).The extraction of gold was studied by Chekushin,V. S. and Mojski,...A long chain aliphatic sulfoxide can be used as an extractant.It can extract almost all metallic ions which can be extracted by tributylphosphate (TBP).The extraction of gold was studied by Chekushin,V. S. and Mojski,M.using petroleum sulfoxide and n-dioctyl sulfoxide(DOSO) as an extractant respectively.展开更多
Highly hydrophobic Di 2-ethyl hexyl phthalate(DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25 days, it can be used as an efficiency indicator ...Highly hydrophobic Di 2-ethyl hexyl phthalate(DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25 days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand(COD)and ammonia concentration were detected below 10 and 1.0 mg/L, respectively for operating conditions of hydraulic retention time(HRT) = 4 and 6 hr, sludge retention time(SRT) = 140 day and sludge concentration between 11.5 and 15.8 g volatile solid(VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor,which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants.展开更多
The process for removal of samarium from NdCl_3 solution containing a little samarium by solvent extrac-tion with unsaponated Di (2-ethyl hexyl) orthosphoric acid (DEHPA) at acidic range is reported. The in-dustri...The process for removal of samarium from NdCl_3 solution containing a little samarium by solvent extrac-tion with unsaponated Di (2-ethyl hexyl) orthosphoric acid (DEHPA) at acidic range is reported. The in-dustrial experiments have been completed on a production line of 150 t Nd_2O_3 per annum in the Baotou ThirdRare Earth Factory. As a result of 9 step counter current extraction , Sm_2 O_3 content in Nd_2 O_3 drops down to0. 08 % from 0. 5% , the purity of neodymium oxide is over 99. 5% and the direct recovery of Nd_2O_3 is 92%~ 93% .展开更多
基金Projects supported by the Fund of National Natural Science Foundation
文摘A long chain aliphatic sulfoxide can be used as an extractant.It can extract almost all metallic ions which can be extracted by tributylphosphate (TBP).The extraction of gold was studied by Chekushin,V. S. and Mojski,M.using petroleum sulfoxide and n-dioctyl sulfoxide(DOSO) as an extractant respectively.
基金the National Sciences and Engineering Research Council of Canada (NSERC Grant Number: I2IPJ 461378)
文摘Highly hydrophobic Di 2-ethyl hexyl phthalate(DEHP) is one of the most prevalent plasticizers in wastewaters. Since its half-life in biological treatment is around 25 days, it can be used as an efficiency indicator of wastewater treatment plant for the removal of hydrophobic emerging contaminants. In this study, the performance of submerged membrane bioreactor was monitored to understand the effect of DEHP on the growth of aerobic microorganisms. The data showed that the chemical oxygen demand(COD)and ammonia concentration were detected below 10 and 1.0 mg/L, respectively for operating conditions of hydraulic retention time(HRT) = 4 and 6 hr, sludge retention time(SRT) = 140 day and sludge concentration between 11.5 and 15.8 g volatile solid(VS)/L. The removal efficiency of DEHP under these conditions was higher and ranged between 91% and 98%. Results also showed that the removal efficiency of DEHP in biological treatment depended on the concentration of sludge, as adsorption is the main mechanism of its removal. For the submerged membrane bioreactor, the pore size is the pivotal factor for DEHP removal, since it determines the amount of soluble microbial products coming out of the process. Highly assimilated microorganisms increase the biodegradation rate, as 74% of inlet DEHP was biodegraded; however, the concentration of DEHP inside sludge was beyond the discharge limit. Understanding the fate of DEHP in membrane bioreactor,which is one of the most promising and futuristic treatment process could provide replacement for conventional processes to satisfy the future stricter regulations on emerging contaminants.
文摘The process for removal of samarium from NdCl_3 solution containing a little samarium by solvent extrac-tion with unsaponated Di (2-ethyl hexyl) orthosphoric acid (DEHPA) at acidic range is reported. The in-dustrial experiments have been completed on a production line of 150 t Nd_2O_3 per annum in the Baotou ThirdRare Earth Factory. As a result of 9 step counter current extraction , Sm_2 O_3 content in Nd_2 O_3 drops down to0. 08 % from 0. 5% , the purity of neodymium oxide is over 99. 5% and the direct recovery of Nd_2O_3 is 92%~ 93% .