A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluat...A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluate the catalytic performance of TFMSA/ATA for cleaving Car–Calk bridged bonds in coals. The results show that DNM was specifically hydrocracked to naphthalene and 1‐methylnaphthalene over TFMSA/ATA in methanol in the absence of gaseous hydrogen. In partic‐ular, TFMSA/ATA was demonstrated to be stable after four cycles with slight loss in catalytic activi‐ty. Furthermore, a proposed H+transfer mechanism successfully interprets the TFMSA/ATA‐cata‐lyzed hydrocracking reaction of DNM.展开更多
基金supported by the Fundamental Research Fund for the Central Universities (China University of Mining & Technology,2014ZDPY34)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘A new solid acid was prepared by trifluoromethanesulfonic acid (TFMSA) impregnation into an acid‐treated attapulgite (ATA). Di(1‐naphthyl)methane (DNM) hydrocracking was used as the probe reaction to evaluate the catalytic performance of TFMSA/ATA for cleaving Car–Calk bridged bonds in coals. The results show that DNM was specifically hydrocracked to naphthalene and 1‐methylnaphthalene over TFMSA/ATA in methanol in the absence of gaseous hydrogen. In partic‐ular, TFMSA/ATA was demonstrated to be stable after four cycles with slight loss in catalytic activi‐ty. Furthermore, a proposed H+transfer mechanism successfully interprets the TFMSA/ATA‐cata‐lyzed hydrocracking reaction of DNM.