A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum ...A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.展开更多
Salinity is one of the major abiotic stresses limiting crop growth and yield.This study investigated the underlying mechanisms of Trichoderma asperellum Q1 in promoting cucumber growth under salt stress, including the...Salinity is one of the major abiotic stresses limiting crop growth and yield.This study investigated the underlying mechanisms of Trichoderma asperellum Q1 in promoting cucumber growth under salt stress, including the abilities of the strain to solubilize phosphate and to produce phytohormone.The results showed that T.asperellum Q1 could solubilize inorganic or organic phosphate and the activities of phosphatases and phytase could be detected in the culture supernatant.In hydroponic experiments, the growth of cucumber seedlings was increased in the hydroponic system treated by culture filtrate of strain Q1 with tricalcium phosphate or calcium phytate under salt stress.This strain also exhibited the ability to produce indole acetic acid(IAA), gibberellic acid(GA) and abscisic acid(ABA) in liquid medium without any inducers.The levels of those three phytohormones in cucumber seedling leaves also increased after inoculated with this strain, along with increased root growth and root activities of the plant.These results demonstrated the mechanisms of T.asperellum Q1 in alleviating the suppression effect of salt stress involving the change of phytohormone levels in cucumber plant and its ability of phosphate solubilization.展开更多
Radioactive fluoride wastes are generated during the operation of molten salt reactors(MSRs) and reprocessing of their spent fuel.Immobilization of these wastes in borosilicate glass is not feasible because of the ver...Radioactive fluoride wastes are generated during the operation of molten salt reactors(MSRs) and reprocessing of their spent fuel.Immobilization of these wastes in borosilicate glass is not feasible because of the very low solubility of fluorides in this host.Alternative candidates are thus an active topic of research including phosphatebased glasses,crystalline ceramics,and hybrid glass-ceramic systems.In this study,mixed fluorides were employed as simulated MSRs waste and incorporated into sodium aluminophosphate glass to obtain phosphate-based waste form.These waste forms were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.Leaching tests were performed in deionized water using the product consistency test A method.This study demonstrates that up to 20 mol%of simulated radioactive waste can be introduced into the NaA1 P glass matrix,and the chemical durability is much better than that of borosilicate.The addition of Fe_2O_3 in the NaAlP glass matrix results in increases of the chemical durability at the expense of fluoride loading(to 6.4 mol%).Phosphate glass vitrification of radioactive waste containing fluorides is a potential method to treat and dispose of MSR wastes.展开更多
1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fie...1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in展开更多
LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning elec...LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning electron microscopy (FESEM) and charge-discharge test.XRD patterns indicate that LiFePO4 prepared in the temperature range of 550-700 ℃ crystallizes well in an olivine-type structure.Through FESEM images,the sphere-like and homogeneous particles of 0.2 μm can be observed.The charge-discharge test shows that the materials prepared at 600 ℃ for 12 h have good electrochemical performance.At the rates of 0.2C (34 mA/g) and 0.5C,the discharge capacities are 144.6 and 122.3 mA·h/g,respectively,together with good cycle performances.展开更多
Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and s...Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.展开更多
Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fony...Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.展开更多
基金Supported by Key Technologies R&D Program of Shanghai Municipal Agricultural Commission(X9810)~~
文摘A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil.
基金supported by the grant from the Shandong Provincial Natural Science Foundation,Shandong,China(ZR2009DM042)
文摘Salinity is one of the major abiotic stresses limiting crop growth and yield.This study investigated the underlying mechanisms of Trichoderma asperellum Q1 in promoting cucumber growth under salt stress, including the abilities of the strain to solubilize phosphate and to produce phytohormone.The results showed that T.asperellum Q1 could solubilize inorganic or organic phosphate and the activities of phosphatases and phytase could be detected in the culture supernatant.In hydroponic experiments, the growth of cucumber seedlings was increased in the hydroponic system treated by culture filtrate of strain Q1 with tricalcium phosphate or calcium phytate under salt stress.This strain also exhibited the ability to produce indole acetic acid(IAA), gibberellic acid(GA) and abscisic acid(ABA) in liquid medium without any inducers.The levels of those three phytohormones in cucumber seedling leaves also increased after inoculated with this strain, along with increased root growth and root activities of the plant.These results demonstrated the mechanisms of T.asperellum Q1 in alleviating the suppression effect of salt stress involving the change of phytohormone levels in cucumber plant and its ability of phosphate solubilization.
文摘Radioactive fluoride wastes are generated during the operation of molten salt reactors(MSRs) and reprocessing of their spent fuel.Immobilization of these wastes in borosilicate glass is not feasible because of the very low solubility of fluorides in this host.Alternative candidates are thus an active topic of research including phosphatebased glasses,crystalline ceramics,and hybrid glass-ceramic systems.In this study,mixed fluorides were employed as simulated MSRs waste and incorporated into sodium aluminophosphate glass to obtain phosphate-based waste form.These waste forms were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.Leaching tests were performed in deionized water using the product consistency test A method.This study demonstrates that up to 20 mol%of simulated radioactive waste can be introduced into the NaA1 P glass matrix,and the chemical durability is much better than that of borosilicate.The addition of Fe_2O_3 in the NaAlP glass matrix results in increases of the chemical durability at the expense of fluoride loading(to 6.4 mol%).Phosphate glass vitrification of radioactive waste containing fluorides is a potential method to treat and dispose of MSR wastes.
基金Financial support from the National Natural Science Foundation of China (21276194)the Specialized Research Fund for the Doctoral Program of Chinese Higher Education (20101208110003)the Key Pillar Program of Tianjin Municipal Science and Technology (11ZCKGX02800)
文摘1 Introduction As the lightest metal with the unique properties of energy production and storage,lithium is regarded as the new century energy metal.Lithium and its compounds were widely used in various industrial fields,especially in
基金Project(06B002) supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(09JJ3092) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2008FJ3008) supported by the Planned Science and Technology Project of Hunan Province,China
文摘LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning electron microscopy (FESEM) and charge-discharge test.XRD patterns indicate that LiFePO4 prepared in the temperature range of 550-700 ℃ crystallizes well in an olivine-type structure.Through FESEM images,the sphere-like and homogeneous particles of 0.2 μm can be observed.The charge-discharge test shows that the materials prepared at 600 ℃ for 12 h have good electrochemical performance.At the rates of 0.2C (34 mA/g) and 0.5C,the discharge capacities are 144.6 and 122.3 mA·h/g,respectively,together with good cycle performances.
文摘Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.
基金Supported by the National Natural Science Foundation of China(Nos.21276194, U1407113), the Training Program for Changjiang Scholars and Innovative Research Team in University, China(No.[2013]373) and the Innovative Research Team of Tianjin Municipal Education Commission, China(No.TD12-5004).
文摘Three ionic liquids(ILs), namely, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-me- thylimidazolium bis[(trifluoromethyl)sulfonyl]imide and 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sul- fonyl]imide with the triisobutyl phosphate(TIBP) and kerosene system were respectively used to extract lithium ion from salt lake brine with a high concentration ratio of magnesium and lithium experimentally. Results indicate that the highest extraction selectivity for lithium was obtained with IL 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)- sulfonyl]imide. The effects of solution pH and phase ratio R(O/A) on the extractive step and the influence of acid concentration of the stripping solution and R(O/A) on the back extraction step were also investigated systematically. The single-step extraction efficiency of lithium ion was 83.71% under the optimal extraction conditions, and the single-step back extraction efficiency was 85.61% with a 1.0 mol/L HCI in 1.0 mol/L NaCI medium as stripping agent at R(O/A)=2. The liquid-liquid extraction mechanism and the complex of the ligand with lithium were proposed.