BACKGROUND Early screening and accurate staging of diabetic retinopathy(DR)can reduce blindness risk in type 2 diabetes patients.DR’s complex pathogenesis involves many factors,making ophthalmologist screening alone ...BACKGROUND Early screening and accurate staging of diabetic retinopathy(DR)can reduce blindness risk in type 2 diabetes patients.DR’s complex pathogenesis involves many factors,making ophthalmologist screening alone insufficient for prevention and treatment.Often,endocrinologists are the first to see diabetic patients and thus should screen for retinopathy for early intervention.AIM To explore the efficacy of non-mydriatic fundus photography(NMFP)-enhanced telemedicine in assessing DR and its various stages.METHODS This retrospective study incorporated findings from an analysis of 93 diabetic patients,examining both NMFP-assisted telemedicine and fundus fluorescein angiography(FFA).It focused on assessing the concordance in DR detection between these two methodologies.Additionally,receiver operating characteristic(ROC)curves were generated to determine the optimal sensitivity and specificity of NMFP-assisted telemedicine,using FFA outcomes as the standard benchmark.RESULTS In the context of DR diagnosis and staging,the kappa coefficients for NMFPassisted telemedicine and FFA were recorded at 0.775 and 0.689 respectively,indicating substantial intermethod agreement.Moreover,the NMFP-assisted telemedicine’s predictive accuracy for positive FFA outcomes,as denoted by the area under the ROC curve,was remarkably high at 0.955,within a confidence interval of 0.914 to 0.995 and a statistically significant P-value of less than 0.001.This predictive model exhibited a specificity of 100%,a sensitivity of 90.9%,and a Youden index of 0.909.CONCLUSION NMFP-assisted telemedicine represents a pragmatic,objective,and precise modality for fundus examination,particularly applicable in the context of endocrinology inpatient care and primary healthcare settings for diabetic patients.Its implementation in these scenarios is of paramount significance,enhancing the clinical accuracy in the diagnosis and therapeutic management of DR.This methodology not only streamlines patient evaluation but also contributes substantially to the optimization of clinical outcomes in DR management.展开更多
AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes o...AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.展开更多
AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN ...AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN features)+ResNet50(Residua Network 50)+FPN(Feature Pyramid Networks)method for detecting hemorrhagic spots,cotton wool spots,exudates,and microaneurysms in DR ultra-widefield SLO.Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate.Feature fusion was carried out by the feature pyramid network FPN,which significantly improved lesion detection rates in SLO fundus images.RESULTS:By analyzing 1076 ultra-widefield SLO images provided by our hospital,with a resolution of 2600×2048 dpi,the accuracy rates for hemorrhagic spots,cotton wool spots,exudates,and microaneurysms were found to be 87.23%,83.57%,86.75%,and 54.94%,respectively.CONCLUSION:The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO,providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.展开更多
AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intel...AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation.展开更多
The utilization of non-mydriatic fundus photography-assisted telemedicine to screen patients with diabetes mellitus for diabetic retinopathy provides an accurate,efficient,and cost-effective method to improve early de...The utilization of non-mydriatic fundus photography-assisted telemedicine to screen patients with diabetes mellitus for diabetic retinopathy provides an accurate,efficient,and cost-effective method to improve early detection of disease.It has also been shown to correlate with increased participation of patients in other aspects of diabetes care.In particular,patients who undergo teleretinal imaging are more likely to meet Comprehensive Diabetes Care Healthcare Effectiveness Data and Information Set metrics,which are linked to preservation of quality-adjusted life years and additional downstream healthcare savings.展开更多
Current treatment strategies for diabetic retinopathy(DR),an eye condition that can lead to blindness,have mainly focused on proliferative DR,including vitreous injection,retinal photocoagulation,and vitrectomy.Vitreo...Current treatment strategies for diabetic retinopathy(DR),an eye condition that can lead to blindness,have mainly focused on proliferative DR,including vitreous injection,retinal photocoagulation,and vitrectomy.Vitreous injections mainly depend on anti-vascular endothelial growth factor therapy.In this editorial,we comment on the article by Sun et al.We focus specifically on the mechanisms of the protective effect of genipin on the retina.Genipin is a gardenia extract used in traditional Chinese medicine(TCM).In their study,the authors suggest that controlling advanced glycosylation by the intraocular injection of genipin may be a strategy for preventing retinopathy.The innovative use of a Chinese medicine extract injected into the eye to achieve a curative effect has attracted our attention.Although TCM is effective in treating DR,the topical application of DR,especially intraocular injections,is not yet feasible.Herein,we present a brief analysis of effective Chinese medicines for the treatment of DR.The effectiveness of local injections of TCM applied directly into the eyes holds promise as an effective treatment approach for DR.展开更多
Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recom...Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.展开更多
Diabetic retinopathy(DR)is a serious microvascular complication of diabetes mellitus and may result in irreversible visual loss.Laser treatment has been the gold standard treatment for diabetic macular edema and proli...Diabetic retinopathy(DR)is a serious microvascular complication of diabetes mellitus and may result in irreversible visual loss.Laser treatment has been the gold standard treatment for diabetic macular edema and proliferative diabetic retinopathy for many years.Of late,intravitreal therapy has emerged as a cornerstone in the management of DR.Among the diverse pharmacotherapeutic options,anti-vascular endothelial growth factor agents have demonstrated remarkable efficacy by attenuating neovascularization and reducing macular edema,thus preserving visual acuity in DR patients.展开更多
Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.Th...Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.展开更多
BACKGROUND No study has investigated the change regularity between age and subfoveal choroidal thickness(SFCT)in proliferative diabetic retinopathy(PDR).AIM To investigate the relationship between the SFCT and age in ...BACKGROUND No study has investigated the change regularity between age and subfoveal choroidal thickness(SFCT)in proliferative diabetic retinopathy(PDR).AIM To investigate the relationship between the SFCT and age in Chinese patients with PDR.METHODS This was a cross-sectional retrospective study.The participants were hospitalized individuals with type 2 diabetes who underwent vitrectomy for PDR.Contralateral eyes that met the criteria were included in the study.All necessary laboratory tests were performed at the time of admission.Central macular thickness(CMT)and SFCT were two quantitative assessments made using enhanced depth imaging optical coherence tomography.CMT was measured automatically and SFCT was measured manually with digital calipers provided by the Heidelberg Eye Explorer software.RESULTS The final analysis included a total of 234 individuals with PDR.The average age was 55.60 years old±10.03 years old,and 57.69%of the population was male.Univariate analysis revealed a significant negative connection between age and SFCT in patients with PDR[β=-2.44,95%confidence interval(95%CI):-3.46 to-1.42;P<0.0001].In the fully adjusted model,the correlation between SFCT and age remained steady(β=-1.68,95%CI:-2.97 to-0.39;P=0.0117).Spline smoothing showed that the relationship between SFCT and age in patients with PDR was non-linear,with an inflection point at 54 years of age.CONCLUSION Our findings suggest that age is a key determinant of choroidal thickness.The non-linear link between SFCT and age in PDR patients should be taken into account.展开更多
Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR ...Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.展开更多
Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus.Diabetic corneal neuropathy refers to the progressive damage of corneal nerves.Diabetic retin...Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus.Diabetic corneal neuropathy refers to the progressive damage of corneal nerves.Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature.However,growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit,which includes both the retinal vascular structures and neural tissues.Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening.However,diabetic corneal neuropathy is commonly overlooked and underdiagnosed,leading to severe ocular surface impairment.Several studies have found that these two conditions tend to occur together,and they share similarities in their pathogenesis pathways,being triggered by a status of chronic hyperglycemia.This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy,whether diabetic corneal neuropathy precedes diabetic retinopathy,as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy.We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.展开更多
AIM:To investigate diabetic retinopathy(DR)prevalence in Chinese renal-biopsied type 2 diabetes mellitus(T2DM)patients with kidney dysfunction,and to further evaluate its relationship with diabetic nephropathy(DN)inci...AIM:To investigate diabetic retinopathy(DR)prevalence in Chinese renal-biopsied type 2 diabetes mellitus(T2DM)patients with kidney dysfunction,and to further evaluate its relationship with diabetic nephropathy(DN)incidence and the risk factors for DR development in this population.METHODS:A total of 84 renal-biopsied T2DM patients were included.Fundus and imaging examinations were employed for DR diagnosis.Demographic information and clinical measures along with renal histopathology were analyzed for comparisons between the DR and non-DR groups.Risk factors on DR development were analyzed with multiple logistic regression.RESULTS:DR prevalence was 50%in total.The incidences of DN,non-diabetic renal disease(NDRD)and mixed-type pathology were 47.6%,19.0%and 33.3%in the DR group respectively,while 11.9%,83.3%and 4.8%in the non-DR group.Systolic blood pressure,ratio of urinary albumin to creatine ratio,urinary albumin,24-hours urinary protein,the incidence and severity of DN histopathology were found statistically increased in the DR group.Multiple logistic regression analysis showed histopathological DN incidence significantly increased the risk of DR development[odds ratio(OR)=21.664,95%confidential interval(CI)5.588 to 83.991,P<0.001 for DN,and OR=45.475,95%CI 6.949 to 297.611,P<0.001 for mixed-type,respectively,in reference to (NDRD)],wherein DN severity positively correlated.CONCLUSION:Renal histopathological evidence indicates DN incidence and severity increases the risk of DR development in Chinese T2DM patients inexperienced of regular fundus examinations.展开更多
●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A to...●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A total of 40 T1DM children was included in the first survey.Because no participant has DR,retina thinning was used as a surrogate indicator for DR.The lowest 25%participants with the thinnest macular retinal thickness were included into the case group,and the others were controls.The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay,and compared between the case and control groups.Four DMS with a potential role in diabetes were identified.The second survey included 27 T1DM children,among which four had DR.The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing.●RESULTS:In the first survey,the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls(|Δβ|>0.1 and Adj.P<0.05),and 328 of these were identified with a significance of Adj.P<0.01.Among these,319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls.Pyrosequencing revealed that the transcription elongation regulator 1 like(TCERG1L,cg07684215)gene was hypermethylated in the four T1DM children with DR(P=0.018),which was consistent with the result from the first survey.The methylation status of the other three DMS(cg26389052,cg25192647,and cg05413694)showed no difference(all P>0.05)between participants with and without DR.●CONCLUSION:The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.展开更多
BACKGROUND Neovascular glaucoma(NVG)is likely to occur after pars plana vitrectomy(PPV)for diabetic retinopathy(DR)in some patients,thus reducing the expected benefit.Understanding the risk factors for NVG occurrence ...BACKGROUND Neovascular glaucoma(NVG)is likely to occur after pars plana vitrectomy(PPV)for diabetic retinopathy(DR)in some patients,thus reducing the expected benefit.Understanding the risk factors for NVG occurrence and building effective risk prediction models are currently required for clinical research.AIM To develop a visual risk profile model to explore factors influencing DR after surgery.METHODS We retrospectively selected 151 patients with DR undergoing PPV.The patients were divided into the NVG(NVG occurrence)and No-NVG(No NVG occurrence)groups according to the occurrence of NVG within 6 months after surgery.Independent risk factors for postoperative NVG were screened by logistic regression.A nomogram prediction model was established using R software,and the model’s prediction accuracy was verified internally and externally,involving the receiver operator characteristic curve and correction curve.RESULTS After importing the data into a logistic regression model,we concluded that a posterior capsular defect,preoperative vascular endothelial growth factor≥302.90 pg/mL,glycosylated hemoglobin≥9.05%,aqueous fluid interleukin 6(IL-6)≥53.27 pg/mL,and aqueous fluid IL-10≥9.11 pg/mL were independent risk factors for postoperative NVG in patients with DR(P<0.05).A nomogram model was established based on the aforementioned independent risk factors,and a computer simulation repeated sampling method was used to internally and externally verify the nomogram model.The area under the curve(AUC),sensitivity,and specificity of the model were 0.962[95%confidence interval(95%CI):0.932-0.991],91.5%,and 82.3%,respectively.The AUC,sensitivity,and specificity of the external validation were 0.878(95%CI:0.746-0.982),66.7%,and 95.7%,respectively.CONCLUSION A nomogram constructed based on the risk factors for postoperative NVG in patients with DR has a high prediction accuracy.This study can help formulate relevant preventive and treatment measures.展开更多
Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy(DR).Early detection and treatment are...Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy(DR).Early detection and treatment are crucial to prevent complete blindness or partial vision loss.Traditional detection methods,which involve ophthalmologists examining retinal fundus images,are subjective,expensive,and time-consuming.Therefore,this study employs artificial intelligence(AI)technology to perform faster and more accurate binary classifications and determine the presence of DR.In this regard,we employed three promising machine learning models namely,support vector machine(SVM),k-nearest neighbors(KNN),and Histogram Gradient Boosting(HGB),after carefully selecting features using transfer learning on the fundus images of the Asia Pacific Tele-Ophthalmology Society(APTOS)(a standard dataset),which includes 3662 images and originally categorized DR into five levels,now simplified to a binary format:No DR and DR(Classes 1-4).The results demonstrate that the SVM model outperformed the other approaches in the literature with the same dataset,achieving an excellent accuracy of 96.9%,compared to 95.6%for both the KNN and HGB models.This approach is evaluated by medical health professionals and offers a valuable pathway for the early detection of DR and can be successfully employed as a clinical decision support system.展开更多
AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to devel...AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects...Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects of prophylactic pattern scanning laser retinal photocoagulation on DR development in Spontaneously Diabetic Torii (SDT) fatty rats as a new prevention approach. Methods: Photocoagulation was applied to the right eyes of 8-week-old Spontaneously Diabetic Torii (SDT) fatty rats, with the left eyes serving as untreated controls. Electroretinography at 9 and 39 weeks of age and pathological examinations, including immunohistochemistry for vascular endothelial growth factor and glial fibrillary acidic protein at 24 and 40 weeks of age, were performed on both eyes. Results: There were no significant differences in amplitude and prolongation of the OP waves between the right and left eyes in SDT fatty rats at 39 weeks of age. Similarly, no significant differences in pathology and immunohistochemistry were observed between the right and left eyes in SDT fatty rats at 24 and 40 weeks of age. Conclusion: Prophylactic pattern scanning retinal laser photocoagulation did not affect the development of diabetic retinopathy in SDT fatty rats.展开更多
AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide...AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.展开更多
基金Supported by the Project of National Natural Science Foundation of China,No.82270863Major Project of Anhui Provincial University Research Program,No.2023AH040400Joint Fund for Medical Artificial Intelligence,No.MAI2023Q026.
文摘BACKGROUND Early screening and accurate staging of diabetic retinopathy(DR)can reduce blindness risk in type 2 diabetes patients.DR’s complex pathogenesis involves many factors,making ophthalmologist screening alone insufficient for prevention and treatment.Often,endocrinologists are the first to see diabetic patients and thus should screen for retinopathy for early intervention.AIM To explore the efficacy of non-mydriatic fundus photography(NMFP)-enhanced telemedicine in assessing DR and its various stages.METHODS This retrospective study incorporated findings from an analysis of 93 diabetic patients,examining both NMFP-assisted telemedicine and fundus fluorescein angiography(FFA).It focused on assessing the concordance in DR detection between these two methodologies.Additionally,receiver operating characteristic(ROC)curves were generated to determine the optimal sensitivity and specificity of NMFP-assisted telemedicine,using FFA outcomes as the standard benchmark.RESULTS In the context of DR diagnosis and staging,the kappa coefficients for NMFPassisted telemedicine and FFA were recorded at 0.775 and 0.689 respectively,indicating substantial intermethod agreement.Moreover,the NMFP-assisted telemedicine’s predictive accuracy for positive FFA outcomes,as denoted by the area under the ROC curve,was remarkably high at 0.955,within a confidence interval of 0.914 to 0.995 and a statistically significant P-value of less than 0.001.This predictive model exhibited a specificity of 100%,a sensitivity of 90.9%,and a Youden index of 0.909.CONCLUSION NMFP-assisted telemedicine represents a pragmatic,objective,and precise modality for fundus examination,particularly applicable in the context of endocrinology inpatient care and primary healthcare settings for diabetic patients.Its implementation in these scenarios is of paramount significance,enhancing the clinical accuracy in the diagnosis and therapeutic management of DR.This methodology not only streamlines patient evaluation but also contributes substantially to the optimization of clinical outcomes in DR management.
基金Supported by Zhejiang Medical Health Science and Technology Project(No.2023KY490).
文摘AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.
基金Supported by Hunan Provincial Science and Technology Department Clinical Medical Technology Innovation Guidance Project(No.2021SK50103)。
文摘AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN features)+ResNet50(Residua Network 50)+FPN(Feature Pyramid Networks)method for detecting hemorrhagic spots,cotton wool spots,exudates,and microaneurysms in DR ultra-widefield SLO.Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate.Feature fusion was carried out by the feature pyramid network FPN,which significantly improved lesion detection rates in SLO fundus images.RESULTS:By analyzing 1076 ultra-widefield SLO images provided by our hospital,with a resolution of 2600×2048 dpi,the accuracy rates for hemorrhagic spots,cotton wool spots,exudates,and microaneurysms were found to be 87.23%,83.57%,86.75%,and 54.94%,respectively.CONCLUSION:The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO,providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.
基金Supported by Hunan Province Traditional Chinese Medicine Research Project(No.B2023043)Hunan Provincial Department of Education Scientific Research Project(No.22B0386)Hunan University of Traditional Chinese Medicine Campus level Research Fund Project(No.2022XJZKC004).
文摘AIM:To develop a classifier for traditional Chinese medicine(TCM)syndrome differentiation of diabetic retinopathy(DR),using optimized machine learning algorithms,which can provide the basis for TCM objective and intelligent syndrome differentiation.METHODS:Collated data on real-world DR cases were collected.A variety of machine learning methods were used to construct TCM syndrome classification model,and the best performance was selected as the basic model.Genetic Algorithm(GA)was used for feature selection to obtain the optimal feature combination.Harris Hawk Optimization(HHO)was used for parameter optimization,and a classification model based on feature selection and parameter optimization was constructed.The performance of the model was compared with other optimization algorithms.The models were evaluated with accuracy,precision,recall,and F1 score as indicators.RESULTS:Data on 970 cases that met screening requirements were collected.Support Vector Machine(SVM)was the best basic classification model.The accuracy rate of the model was 82.05%,the precision rate was 82.34%,the recall rate was 81.81%,and the F1 value was 81.76%.After GA screening,the optimal feature combination contained 37 feature values,which was consistent with TCM clinical practice.The model based on optimal combination and SVM(GA_SVM)had an accuracy improvement of 1.92%compared to the basic classifier.SVM model based on HHO and GA optimization(HHO_GA_SVM)had the best performance and convergence speed compared with other optimization algorithms.Compared with the basic classification model,the accuracy was improved by 3.51%.CONCLUSION:HHO and GA optimization can improve the model performance of SVM in TCM syndrome differentiation of DR.It provides a new method and research idea for TCM intelligent assisted syndrome differentiation.
文摘The utilization of non-mydriatic fundus photography-assisted telemedicine to screen patients with diabetes mellitus for diabetic retinopathy provides an accurate,efficient,and cost-effective method to improve early detection of disease.It has also been shown to correlate with increased participation of patients in other aspects of diabetes care.In particular,patients who undergo teleretinal imaging are more likely to meet Comprehensive Diabetes Care Healthcare Effectiveness Data and Information Set metrics,which are linked to preservation of quality-adjusted life years and additional downstream healthcare savings.
基金Supported by National Natural Science Foundation of China,No.82104862Scientific Research Project Foundation of Zhejiang Chinese Medical University,No.2023FSYYZZ01 and No.2023RCZXZK49.
文摘Current treatment strategies for diabetic retinopathy(DR),an eye condition that can lead to blindness,have mainly focused on proliferative DR,including vitreous injection,retinal photocoagulation,and vitrectomy.Vitreous injections mainly depend on anti-vascular endothelial growth factor therapy.In this editorial,we comment on the article by Sun et al.We focus specifically on the mechanisms of the protective effect of genipin on the retina.Genipin is a gardenia extract used in traditional Chinese medicine(TCM).In their study,the authors suggest that controlling advanced glycosylation by the intraocular injection of genipin may be a strategy for preventing retinopathy.The innovative use of a Chinese medicine extract injected into the eye to achieve a curative effect has attracted our attention.Although TCM is effective in treating DR,the topical application of DR,especially intraocular injections,is not yet feasible.Herein,we present a brief analysis of effective Chinese medicines for the treatment of DR.The effectiveness of local injections of TCM applied directly into the eyes holds promise as an effective treatment approach for DR.
文摘Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.
文摘Diabetic retinopathy(DR)is a serious microvascular complication of diabetes mellitus and may result in irreversible visual loss.Laser treatment has been the gold standard treatment for diabetic macular edema and proliferative diabetic retinopathy for many years.Of late,intravitreal therapy has emerged as a cornerstone in the management of DR.Among the diverse pharmacotherapeutic options,anti-vascular endothelial growth factor agents have demonstrated remarkable efficacy by attenuating neovascularization and reducing macular edema,thus preserving visual acuity in DR patients.
基金supported by the National Natural Science Foundation of China(Grant No.82104701)Science Fund Program for Outstanding Young Scholars in Universities of Anhui Province(Grant No.2022AH030064)+3 种基金Key Project at Central Government Level:the Ability Establishment of Sustainable Use for Valuable Chinese Medicine Resources(Grant No.2060302)Foundation of Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application(Grant No.2021KFKT10)China Agriculture Research System of MOF and MARA(Grant No.CARS-21)Talent Support Program of Anhui University of Chinese Medicine(Grant No.2020rcyb007).
文摘Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment.
基金Supported by the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University,No.ZYJC21025.
文摘BACKGROUND No study has investigated the change regularity between age and subfoveal choroidal thickness(SFCT)in proliferative diabetic retinopathy(PDR).AIM To investigate the relationship between the SFCT and age in Chinese patients with PDR.METHODS This was a cross-sectional retrospective study.The participants were hospitalized individuals with type 2 diabetes who underwent vitrectomy for PDR.Contralateral eyes that met the criteria were included in the study.All necessary laboratory tests were performed at the time of admission.Central macular thickness(CMT)and SFCT were two quantitative assessments made using enhanced depth imaging optical coherence tomography.CMT was measured automatically and SFCT was measured manually with digital calipers provided by the Heidelberg Eye Explorer software.RESULTS The final analysis included a total of 234 individuals with PDR.The average age was 55.60 years old±10.03 years old,and 57.69%of the population was male.Univariate analysis revealed a significant negative connection between age and SFCT in patients with PDR[β=-2.44,95%confidence interval(95%CI):-3.46 to-1.42;P<0.0001].In the fully adjusted model,the correlation between SFCT and age remained steady(β=-1.68,95%CI:-2.97 to-0.39;P=0.0117).Spline smoothing showed that the relationship between SFCT and age in patients with PDR was non-linear,with an inflection point at 54 years of age.CONCLUSION Our findings suggest that age is a key determinant of choroidal thickness.The non-linear link between SFCT and age in PDR patients should be taken into account.
基金This research was funded by the National Natural Science Foundation of China(Nos.71762010,62262019,62162025,61966013,12162012)the Hainan Provincial Natural Science Foundation of China(Nos.823RC488,623RC481,620RC603,621QN241,620RC602,121RC536)+1 种基金the Haikou Science and Technology Plan Project of China(No.2022-016)the Project supported by the Education Department of Hainan Province,No.Hnky2021-23.
文摘Artificial Intelligence(AI)is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy(VTDR),which is a leading cause of visual impairment and blindness worldwide.However,previous automated VTDR detection methods have mainly relied on manual feature extraction and classification,leading to errors.This paper proposes a novel VTDR detection and classification model that combines different models through majority voting.Our proposed methodology involves preprocessing,data augmentation,feature extraction,and classification stages.We use a hybrid convolutional neural network-singular value decomposition(CNN-SVD)model for feature extraction and selection and an improved SVM-RBF with a Decision Tree(DT)and K-Nearest Neighbor(KNN)for classification.We tested our model on the IDRiD dataset and achieved an accuracy of 98.06%,a sensitivity of 83.67%,and a specificity of 100%for DR detection and evaluation tests,respectively.Our proposed approach outperforms baseline techniques and provides a more robust and accurate method for VTDR detection.
文摘Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus.Diabetic corneal neuropathy refers to the progressive damage of corneal nerves.Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature.However,growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit,which includes both the retinal vascular structures and neural tissues.Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening.However,diabetic corneal neuropathy is commonly overlooked and underdiagnosed,leading to severe ocular surface impairment.Several studies have found that these two conditions tend to occur together,and they share similarities in their pathogenesis pathways,being triggered by a status of chronic hyperglycemia.This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy,whether diabetic corneal neuropathy precedes diabetic retinopathy,as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy.We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.
基金Supported by the National Natural Science Foundation of China(No.82000885)Natural Science Foundation of Shanghai(No.21ZR1439700).
文摘AIM:To investigate diabetic retinopathy(DR)prevalence in Chinese renal-biopsied type 2 diabetes mellitus(T2DM)patients with kidney dysfunction,and to further evaluate its relationship with diabetic nephropathy(DN)incidence and the risk factors for DR development in this population.METHODS:A total of 84 renal-biopsied T2DM patients were included.Fundus and imaging examinations were employed for DR diagnosis.Demographic information and clinical measures along with renal histopathology were analyzed for comparisons between the DR and non-DR groups.Risk factors on DR development were analyzed with multiple logistic regression.RESULTS:DR prevalence was 50%in total.The incidences of DN,non-diabetic renal disease(NDRD)and mixed-type pathology were 47.6%,19.0%and 33.3%in the DR group respectively,while 11.9%,83.3%and 4.8%in the non-DR group.Systolic blood pressure,ratio of urinary albumin to creatine ratio,urinary albumin,24-hours urinary protein,the incidence and severity of DN histopathology were found statistically increased in the DR group.Multiple logistic regression analysis showed histopathological DN incidence significantly increased the risk of DR development[odds ratio(OR)=21.664,95%confidential interval(CI)5.588 to 83.991,P<0.001 for DN,and OR=45.475,95%CI 6.949 to 297.611,P<0.001 for mixed-type,respectively,in reference to (NDRD)],wherein DN severity positively correlated.CONCLUSION:Renal histopathological evidence indicates DN incidence and severity increases the risk of DR development in Chinese T2DM patients inexperienced of regular fundus examinations.
基金Supported by the National Key Research and Development Program of China(No.2016YFC0904800)National Natural Science Foundation of China(No.82101181)+1 种基金China Scholarship Council(No.201506230096)Shanghai Sailing Program(No.19YF1439700).
文摘●AIM:To identify the differential methylation sites(DMS)and their according genes associated with diabetic retinopathy(DR)development in type 1 diabetes(T1DM)children.●METHODS:This study consists of two surveys.A total of 40 T1DM children was included in the first survey.Because no participant has DR,retina thinning was used as a surrogate indicator for DR.The lowest 25%participants with the thinnest macular retinal thickness were included into the case group,and the others were controls.The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay,and compared between the case and control groups.Four DMS with a potential role in diabetes were identified.The second survey included 27 T1DM children,among which four had DR.The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing.●RESULTS:In the first survey,the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls(|Δβ|>0.1 and Adj.P<0.05),and 328 of these were identified with a significance of Adj.P<0.01.Among these,319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls.Pyrosequencing revealed that the transcription elongation regulator 1 like(TCERG1L,cg07684215)gene was hypermethylated in the four T1DM children with DR(P=0.018),which was consistent with the result from the first survey.The methylation status of the other three DMS(cg26389052,cg25192647,and cg05413694)showed no difference(all P>0.05)between participants with and without DR.●CONCLUSION:The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.
基金Supported by the Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-037A.
文摘BACKGROUND Neovascular glaucoma(NVG)is likely to occur after pars plana vitrectomy(PPV)for diabetic retinopathy(DR)in some patients,thus reducing the expected benefit.Understanding the risk factors for NVG occurrence and building effective risk prediction models are currently required for clinical research.AIM To develop a visual risk profile model to explore factors influencing DR after surgery.METHODS We retrospectively selected 151 patients with DR undergoing PPV.The patients were divided into the NVG(NVG occurrence)and No-NVG(No NVG occurrence)groups according to the occurrence of NVG within 6 months after surgery.Independent risk factors for postoperative NVG were screened by logistic regression.A nomogram prediction model was established using R software,and the model’s prediction accuracy was verified internally and externally,involving the receiver operator characteristic curve and correction curve.RESULTS After importing the data into a logistic regression model,we concluded that a posterior capsular defect,preoperative vascular endothelial growth factor≥302.90 pg/mL,glycosylated hemoglobin≥9.05%,aqueous fluid interleukin 6(IL-6)≥53.27 pg/mL,and aqueous fluid IL-10≥9.11 pg/mL were independent risk factors for postoperative NVG in patients with DR(P<0.05).A nomogram model was established based on the aforementioned independent risk factors,and a computer simulation repeated sampling method was used to internally and externally verify the nomogram model.The area under the curve(AUC),sensitivity,and specificity of the model were 0.962[95%confidence interval(95%CI):0.932-0.991],91.5%,and 82.3%,respectively.The AUC,sensitivity,and specificity of the external validation were 0.878(95%CI:0.746-0.982),66.7%,and 95.7%,respectively.CONCLUSION A nomogram constructed based on the risk factors for postoperative NVG in patients with DR has a high prediction accuracy.This study can help formulate relevant preventive and treatment measures.
文摘Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy(DR).Early detection and treatment are crucial to prevent complete blindness or partial vision loss.Traditional detection methods,which involve ophthalmologists examining retinal fundus images,are subjective,expensive,and time-consuming.Therefore,this study employs artificial intelligence(AI)technology to perform faster and more accurate binary classifications and determine the presence of DR.In this regard,we employed three promising machine learning models namely,support vector machine(SVM),k-nearest neighbors(KNN),and Histogram Gradient Boosting(HGB),after carefully selecting features using transfer learning on the fundus images of the Asia Pacific Tele-Ophthalmology Society(APTOS)(a standard dataset),which includes 3662 images and originally categorized DR into five levels,now simplified to a binary format:No DR and DR(Classes 1-4).The results demonstrate that the SVM model outperformed the other approaches in the literature with the same dataset,achieving an excellent accuracy of 96.9%,compared to 95.6%for both the KNN and HGB models.This approach is evaluated by medical health professionals and offers a valuable pathway for the early detection of DR and can be successfully employed as a clinical decision support system.
基金Supported by the Fund for Shanxi“1331 Project”and Supported by Fundamental Research Program of Shanxi Province(No.202203021211006)the Key Research,Development Program of Shanxi Province(No.201903D311009)+4 种基金the Key Research Program of Taiyuan University(No.21TYKZ01)the Open Fund of Shanxi Province Key Laboratory of Ophthalmology(No.2023SXKLOS04)Shenzhen Fund for Guangdong Provincial High-Level Clinical Key Specialties(No.SZGSP014)Sanming Project of Medicine in Shenzhen(No.SZSM202311012)Shenzhen Science and Technology Planning Project(No.KCXFZ20211020163813019).
文摘AIM:To address the challenges of data labeling difficulties,data privacy,and necessary large amount of labeled data for deep learning methods in diabetic retinopathy(DR)identification,the aim of this study is to develop a source-free domain adaptation(SFDA)method for efficient and effective DR identification from unlabeled data.METHODS:A multi-SFDA method was proposed for DR identification.This method integrates multiple source models,which are trained from the same source domain,to generate synthetic pseudo labels for the unlabeled target domain.Besides,a softmax-consistence minimization term is utilized to minimize the intra-class distances between the source and target domains and maximize the inter-class distances.Validation is performed using three color fundus photograph datasets(APTOS2019,DDR,and EyePACS).RESULTS:The proposed model was evaluated and provided promising results with respectively 0.8917 and 0.9795 F1-scores on referable and normal/abnormal DR identification tasks.It demonstrated effective DR identification through minimizing intra-class distances and maximizing inter-class distances between source and target domains.CONCLUSION:The multi-SFDA method provides an effective approach to overcome the challenges in DR identification.The method not only addresses difficulties in data labeling and privacy issues,but also reduces the need for large amounts of labeled data required by deep learning methods,making it a practical tool for early detection and preservation of vision in diabetic patients.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
文摘Research Background and Purpose: The number of diabetic patients is rapidly increasing, making it crucial to find methods to prevent diabetic retinopathy (DR), a leading cause of blindness. We investigated the effects of prophylactic pattern scanning laser retinal photocoagulation on DR development in Spontaneously Diabetic Torii (SDT) fatty rats as a new prevention approach. Methods: Photocoagulation was applied to the right eyes of 8-week-old Spontaneously Diabetic Torii (SDT) fatty rats, with the left eyes serving as untreated controls. Electroretinography at 9 and 39 weeks of age and pathological examinations, including immunohistochemistry for vascular endothelial growth factor and glial fibrillary acidic protein at 24 and 40 weeks of age, were performed on both eyes. Results: There were no significant differences in amplitude and prolongation of the OP waves between the right and left eyes in SDT fatty rats at 39 weeks of age. Similarly, no significant differences in pathology and immunohistochemistry were observed between the right and left eyes in SDT fatty rats at 24 and 40 weeks of age. Conclusion: Prophylactic pattern scanning retinal laser photocoagulation did not affect the development of diabetic retinopathy in SDT fatty rats.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJYXZDXK-016A)Henan Provincial Department of Science and Technology(No.LHGJ20200802).
文摘AIM:To identify different metabolites,proteins and related pathways to elucidate the causes of proliferative diabetic retinopathy(PDR)and resistance to anti-vascular endothelial growth factor(VEGF)drugs,and to provide biomarkers for the diagnosis and treatment of PDR.METHODS:Vitreous specimens from patients with diabetic retinopathy were collected and analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS/MS)analyses based on 4D label-free technology.Statistically differentially expressed proteins(DEPs),Gene Ontology(GO),Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway representation and protein interactions were analyzed.RESULTS:A total of 12 samples were analyzed.The proteomics results showed that a total of 58 proteins were identified as DEPs,of which 47 proteins were up-regulated and 11 proteins were down-regulated.We found that C1q and tumor necrosis factor related protein 5(C1QTNF5),Clusterin(CLU),tissue inhibitor of metal protease 1(TIMP1)and signal regulatory protein alpha(SIRPα)can all be specifically regulated after aflibercept treatment.GO functional analysis showed that some DEPs are related to changes in inflammatory regulatory pathways caused by PDR.In addition,protein-protein interaction(PPI)network evaluation revealed that TIMP1 plays a central role in neural regulation.In addition,CD47/SIRPαmay become a key target to resolve anti-VEGF drug resistance in PDR.CONCLUSION:Proteomic analysis is an approach of choice to explore the molecular mechanisms of PDR.Our data show that multiple proteins are differentially changed in PDR patients after intravitreal injection of aflibercept,among which C1QTNF5,CLU,TIMP1 and SIRPαmay become targets for future treatment of PDR and resolution of anti-VEGF resistance.