期刊文献+
共找到174篇文章
< 1 2 9 >
每页显示 20 50 100
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis 被引量:2
1
作者 Yun-Fang Liu Yu-Ke Ji +3 位作者 Fang-Qin Fei Nai-Mei Chen Zhen-Tao Zhu Xing-Zhen Fei 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第9期1395-1405,共11页
Diabetic retinopathy(DR)is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide.Early detection and treatment can effectively delay vision decline and even blindness in pa... Diabetic retinopathy(DR)is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide.Early detection and treatment can effectively delay vision decline and even blindness in patients with DR.In recent years,artificial intelligence(AI)models constructed by machine learning and deep learning(DL)algorithms have been widely used in ophthalmology research,especially in diagnosing and treating ophthalmic diseases,particularly DR.Regarding DR,AI has mainly been used in its diagnosis,grading,and lesion recognition and segmentation,and good research and application results have been achieved.This study summarizes the research progress in AI models based on machine learning and DL algorithms for DR diagnosis and discusses some limitations and challenges in AI research. 展开更多
关键词 diabetic retinopathy artificial intelligence machine learning deep learning diagnosis GRADING lesions segmentation
下载PDF
Algorithm of automatic identification of diabetic retinopathy foci based on ultra-widefield scanning laser ophthalmoscopy
2
作者 Jie Wang Su-Zhen Wang +7 位作者 Xiao-Lin Qin Meng Chen Heng-Ming Zhang Xin Liu Meng-Jun Xiang Jian-Bin Hu Hai-Yu Huang Chang-Jun Lan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期610-615,共6页
AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN ... AIM:To propose an algorithm for automatic detection of diabetic retinopathy(DR)lesions based on ultra-widefield scanning laser ophthalmoscopy(SLO).METHODS:The algorithm utilized the FasterRCNN(Faster Regions with CNN features)+ResNet50(Residua Network 50)+FPN(Feature Pyramid Networks)method for detecting hemorrhagic spots,cotton wool spots,exudates,and microaneurysms in DR ultra-widefield SLO.Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate.Feature fusion was carried out by the feature pyramid network FPN,which significantly improved lesion detection rates in SLO fundus images.RESULTS:By analyzing 1076 ultra-widefield SLO images provided by our hospital,with a resolution of 2600×2048 dpi,the accuracy rates for hemorrhagic spots,cotton wool spots,exudates,and microaneurysms were found to be 87.23%,83.57%,86.75%,and 54.94%,respectively.CONCLUSION:The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO,providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms. 展开更多
关键词 diabetic retinopathy ultra-widefield scanning laser ophthalmoscopy intelligent diagnosis system
下载PDF
Diabetic Retinopathy Diagnosis Using ResNet with Fuzzy Rough C-Means Clustering
3
作者 R.S.Rajkumar A.Grace Selvarani 《Computer Systems Science & Engineering》 SCIE EI 2022年第8期509-521,共13页
Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vi... Diabetic Retinopathy(DR)is a vision disease due to the long-term prevalenceof Diabetes Mellitus.It affects the retina of the eye and causes severedamage to the vision.If not treated on time it may lead to permanent vision lossin diabetic patients.Today’s development in science has no medication to cureDiabetic Retinopathy.However,if diagnosed at an early stage it can be controlledand permanent vision loss can be avoided.Compared to the diabetic population,experts to diagnose Diabetic Retinopathy are very less in particular to local areas.Hence an automatic computer-aided diagnosis for DR detection is necessary.Inthis paper,we propose an unsupervised clustering technique to automatically clusterthe DR into one of its five development stages.The deep learning based unsupervisedclustering is made to improve itself with the help of fuzzy rough c-meansclustering where cluster centers are updated by fuzzy rough c-means clusteringalgorithm during the forward pass and the deep learning model representationsare updated by Stochastic Gradient Descent during the backward pass of training.The proposed method was implemented using python and the results were takenon DGX server with Tesla V100 GPU cards.An experimental result on the publicallyavailable Kaggle dataset shows an overall accuracy of 88.7%.The proposedmodel improves the accuracy of DR diagnosis compared to the existingunsupervised algorithms like k-means,FCM,auto-encoder,and FRCM withalexnet. 展开更多
关键词 diabetic retinopathy detection diabetic retinopathy diagnosis fuzzy rough c-means clustering unsupervised CNN CLUSTERING
下载PDF
An Optimal Deep Learning Based Computer-Aided Diagnosis System for Diabetic Retinopathy
4
作者 Phong Thanh Nguyen Vy Dang Bich Huynh +3 位作者 Khoa Dang Vo Phuong Thanh Phan Eunmok Yang Gyanendra Prasad Joshi 《Computers, Materials & Continua》 SCIE EI 2021年第3期2815-2830,共16页
Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on o... Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively. 展开更多
关键词 diabetic retinopathy convolutional neural network CLASSIFICATION image processing computer-aided diagnosis
下载PDF
Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy
5
作者 Qaisar Abbas Mostafa E.A.Ibrahim Abdul Rauf Baig 《Computers, Materials & Continua》 SCIE EI 2022年第6期4573-4590,共18页
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco... Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR. 展开更多
关键词 diabetic retinopathy retinal fundus images computer-aided diagnosis system deep learning transfer learning convolutional neural network
下载PDF
Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs 被引量:2
6
作者 G.Arun Sampaul Thomas Y.Harold Robinson +3 位作者 E.Golden Julie Vimal Shanmuganathan Seungmin Rho Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第2期1613-1629,共17页
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and... Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better. 展开更多
关键词 Convolutional neural networks dental diagnosis image recognition diabetic retinopathy detection
下载PDF
Detection and Grading of Diabetic Retinopathy in Retinal Images Using Deep Intelligent Systems: A Comprehensive Review
7
作者 H.Asha Gnana Priya J.Anitha +3 位作者 Daniela Elena Popescu Anju Asokan D.Jude Hemanth Le Hoang Son 《Computers, Materials & Continua》 SCIE EI 2021年第3期2771-2786,共16页
Diabetic Retinopathy(DR)is an eye disease that mainly affects people with diabetes.People affected by DR start losing their vision from an early stage even though the symptoms are identified only at the later stage.On... Diabetic Retinopathy(DR)is an eye disease that mainly affects people with diabetes.People affected by DR start losing their vision from an early stage even though the symptoms are identified only at the later stage.Once the vision is lost,it cannot be regained but can be prevented from causing any further damage.Early diagnosis of DR is required for preventing vision loss,for which a trained ophthalmologist is required.The clinical practice is time-consuming and is not much successful in identifying DR at early stages.Hence,Computer-Aided Diagnosis(CAD)system is a suitable alternative for screening and grading of DR for a larger population.This paper addresses the different stages in CAD system and the challenges in identifying and grading of DR by analyzing various recently evolved techniques.The performance metrics used to evaluate the Computer-Aided Diagnosis system for clinical practice is also discussed. 展开更多
关键词 diabetic retinopathy computer-aided diagnosis system vessel extraction optic disc segmentation retinal features grading of DR
下载PDF
MicroRNAs as biomarkers of diabetic retinopathy and disease progression 被引量:28
8
作者 Bridget Martinez Philip V. Peplow 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1858-1869,共12页
Diabetes mellitus, together with its complications, has been increasing in prevalence worldwide. Its complications include cardiovascular disease(e.g., myocardial infarction, stroke), neuropathy, nephropathy, and eye ... Diabetes mellitus, together with its complications, has been increasing in prevalence worldwide. Its complications include cardiovascular disease(e.g., myocardial infarction, stroke), neuropathy, nephropathy, and eye complications(e.g., glaucoma, cataracts, retinopathy, and macular edema). In patients with either type 1 or type 2 diabetes mellitus, diabetic retinopathy is the leading cause of visual impairment or blindness. It is characterized by progressive changes in the retinal microvasculature. The progression from nonproliferative diabetic retinopathy to a more advanced stage of moderate to severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy occurs very quickly after diagnosis of mild nonproliferative diabetic retinopathy. The etiology of diabetic retinopathy is unclear, and present treatments have limited effectiveness. Currently diabetic retinopathy can only be diagnosed by a trained specialist, which reduces the population that can be examined. A screening biomarker of diabetic retinopathy with high sensitivity and specificity would aid considerably in identifying those individuals in need of clinical assessment and treatment. The majority of the studies reviewed identified specific microRNAs in blood serum/plasma able to distinguish diabetic patients with retinopathy from those without retinopathy and for the progresion of the disease from nonproliferative diabetic retinopathy to proliferative diabetic retinopathy. In addition,certain microRNAs in vitreous humor were dysregulated in proliferative diabetic retinopathy compared to controls. A very high percentage of patients with diabetic retinopathy develop Alzheimer’s disease. Thus, identifying diabetic retinopathy by measurement of suitable biomarkers would also enable better screening and treatment of those individuals at risk of Alzheimer’s disease. 展开更多
关键词 diabetes retinopathy diagnosis disease PROGRESSION MICRORNAS biomarkers blood serum/ plasma VITREOUS HUMOR humans
下载PDF
血清CysC和CTRP9水平对2型糖尿病视网膜病变的诊断价值
9
作者 张书 景海霞 +2 位作者 刘勤 马建军 白惠玲 《中华实验眼科杂志》 CAS CSCD 北大核心 2024年第3期271-278,共8页
目的探讨血清胱抑素C(CysC)和C1q肿瘤坏死因子相关蛋白9(CTRP9)水平对2型糖尿病患者糖尿病视网膜病变(DR)及糖尿病黄斑水肿(DME)的诊断价值。方法采用横断面研究方法,纳入2021年4月至2022年4月在甘肃省人民医院就诊的135例2型糖尿病患者... 目的探讨血清胱抑素C(CysC)和C1q肿瘤坏死因子相关蛋白9(CTRP9)水平对2型糖尿病患者糖尿病视网膜病变(DR)及糖尿病黄斑水肿(DME)的诊断价值。方法采用横断面研究方法,纳入2021年4月至2022年4月在甘肃省人民医院就诊的135例2型糖尿病患者,年龄45~75岁,按照DR分级标准将患者分为无DR(NDR)组、非增生型DR(NPDR)组和增生型DR(PDR)组,每组45例。根据有无DME将NPDR组和PDR组患者分为DME组51例和非DME组39例。另选取45名健康体检者作为正常对照组。采集受检者空腹外周静脉血,检测血清中糖化血红蛋白、空腹血糖、三酰甘油、总胆固醇、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇、CysC和CTRP9水平。比较各组CysC和CTRP9表达差异。采用多因素Logistic回归分析模型评估DR及DME的独立影响因素,采用受试者工作特征(ROC)曲线评价血清CysC和CTRP9对DR及DME的诊断价值。结果正常对照组、NDR组、NPDR组和PDR组血清CysC水平分别为0.74(0.67,0.83)、1.03(0.85,1.22)、1.40(0.98,1.63)和1.66(1.31,1.85)mg/L,呈逐渐升高趋势;CTRP9水平分别为(136.90±14.95)、(120.23±16.31)、(109.50±14.71)和(90.99±13.88)pg/ml,呈逐渐降低趋势;组间总体比较差异均有统计学意义(Z=89.430,P<0.001;F=74.242,P<0.001),组间两两比较差异均有统计学意义(均P<0.05)。与非DME组相比,DME组血清CysC水平显著升高、CTRP9水平显著降低,差异均有统计学意义(均P<0.05)。多因素Logistic回归分析结果显示,血清CysC(OR=19.742,95%CI:4.515~86.316,P<0.001)是DR发生的独立危险因素,CTRP9水平(OR=0.937,95%CI:0.908~0.966,P<0.001)是DR发生的保护因素;血清CTRP9水平(OR=0.838,95%CI:0.778~0.903,P<0.001)为DME发生的保护因素。ROC曲线结果显示,血清CysC和CTRP9水平单独及联合诊断2型糖尿病患者并发DR的ROC曲线下面积(AUC)分别为0.798、0.802和0.870,血清CysC和CTRP9水平截断值分别取1.34 mg/L和110.12 pg/ml时可获得最佳诊断效能;其单独及联合诊断DR患者并发DME的AUC分别为0.682、0.923和0.923,血清CTRP9水平的截断值取104.68 pg/ml时可获得最佳诊断效能。结论血清CysC水平升高及CTRP9水平降低是2型糖尿病患者发生DR的危险因素,血清CTRP9水平降低为DR患者发生DME的危险因素之一。 展开更多
关键词 糖尿病 糖尿病视网膜病变 黄斑水肿 胱抑素C C1q肿瘤坏死因子相关蛋白9 诊断
下载PDF
血清Ephrin-A1、CTRP9对糖尿病性视网膜病变的诊断价值及与机体氧化应激的相关性分析
10
作者 万新娟 蒋晨 +1 位作者 谢小东 丁琳 《临床和实验医学杂志》 2024年第6期597-600,共4页
目的分析血清肝配蛋白A1(Ephrin-A1)、C1q肿瘤坏死因子相关蛋白9(CTRP9)对糖尿病性视网膜病变的诊断价值及与机体氧化应激的相关性。方法回顾性选择自2021年1月至2023年1月新疆维吾尔自治区人民医院接诊的80例糖尿病性视网膜病变患者作... 目的分析血清肝配蛋白A1(Ephrin-A1)、C1q肿瘤坏死因子相关蛋白9(CTRP9)对糖尿病性视网膜病变的诊断价值及与机体氧化应激的相关性。方法回顾性选择自2021年1月至2023年1月新疆维吾尔自治区人民医院接诊的80例糖尿病性视网膜病变患者作为观察组,另选同期的80例单纯2型糖尿病患者作为对照组。检测两组患者血清Ephrin-A1、CTRP9及氧化应激指标[超氧化物歧化酶(SOD)、还原型谷胱甘肽(GSH)、丙二醛],分析不同分期的糖尿病性视网膜病变患者血清Ephrin-A1、CTRP9水平的差异性,使用受试者工作特征(ROC)曲线分析血清Ephrin-A1、CTRP9对糖尿病性视网膜病变的诊断效能,Pearson相关性分析糖尿病性视网膜病变患者血清Ephrin-A1、CTRP9水平与机体氧化应激指标的相关性。结果观察组血清Ephrin-A1水平为(7.81±2.34)ng/mL,高于对照组[(2.25±0.76)ng/mL],CTRP9水平为(98.17±10.13)pg/mL,低于对照组[(156.42±15.89)pg/mL],差异均有统计学意义(P<0.05)。观察组血清SOD、GSH水平分别为(50.14±5.63)U/L、(142.34±13.98)mg/L,均低于对照组[(73.52±8.52)U/L、(189.71±23.56)mg/L],丙二醛水平为(6.89±3.07)μmol/L,高于对照组[(3.56±1.02)μmol/L],差异均有统计学意义(P<0.05)。增生型糖尿病性视网膜病变患者血清Ephrin-A1为(15.42±4.80)ng/mL,高于非增生型糖尿病性视网膜病变患者[(6.09±2.11)ng/mL],CTRP9水平为(75.25±6.73)pg/mL,低于非增生型糖尿病性视网膜病变患者[(119.46±13.08)pg/mL],差异均有统计学意义(P<0.05)。经ROC曲线分析,血清Ephrin-A1联合CTRP9诊断糖尿病性视网膜病变的敏感度为92.68%、特异度为53.69%、AUC为0.931。经Pearson相关性分析,糖尿病性视网膜病变患者血清Ephrin-A1与SOD、GSH呈负相关,与丙二醛呈正相关(P<0.05);CTRP9水平与SOD、GSH呈正相关,与丙二醛呈负相关(P<0.05)。结论血清Ephrin-A1联合CTRP9可提高对糖尿病性视网膜病变的诊断效能,其中机体氧化应激与Ephrin-A1呈正性关联,与CTRP9呈负性关联,值得进一步研究应用。 展开更多
关键词 糖尿病性视网膜病变 肝配蛋白A1 C1q肿瘤坏死因子相关蛋白9 诊断 氧化应激
下载PDF
GhostNet轻量级网络在糖尿病视网膜病变诊断中的应用价值
11
作者 朱小红 张云 +1 位作者 刘美玲 曹凯 《首都医科大学学报》 CAS 北大核心 2024年第4期678-685,共8页
目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的D... 目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的DR诊断模型的应用价值。方法收集大样本的眼底彩照29535张(含DR 9883张、正常眼底2000张、用于做鉴别诊断的其他致盲性眼底病17652张)。分别采用经典卷积神经网络DenseNet121和轻量级网络GhostNet建模,并借助迁移学习做模型训练。采用受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)、灵敏度、特异度、准确率评价模型性能。结果与基于DenseNet121的模型相比,基于GhostNet的模型对单张眼底照的诊断时间缩短了60.3%。在DR的诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.911、0.888、0.934、91.3%,基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.954、0.921、0.986、95.5%。在DR与其他眼底病的鉴别诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.862、0.856、0.901、87.8%;基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.899、0.871、0.935、90.2%。结论基于GhostNet轻量级神经网络构建的DR诊断模型和鉴别诊断模型,其诊断效率较经典模型DenseNet121有显著提升,并且模型兼具较高的准确率。对于社区医院等缺乏眼科医师且设备性能不高的基层医疗机构,可考虑应用该技术开展DR的初筛。 展开更多
关键词 糖尿病视网膜病变 轻量级神经网络模型 诊断 筛查 社区
下载PDF
HGI、β2-MG、HMGB1在2型糖尿病视网膜病变早期诊断中的临床价值 被引量:1
12
作者 胡贺松 张红岩 +2 位作者 闫亚凯 刘克 乔慧子 《中华保健医学杂志》 2024年第3期340-343,共4页
目的 探讨糖化血红蛋白变异指数(HGI)、血清β2微球蛋白(β2-MG)及高迁移族蛋白B1(HMGB1)在2型糖尿病视网膜病变(DR)早期诊断中的临床价值。方法 回顾性选取2020年1月~2023年1月在皖西卫生职业学院附属阜南县中医院治疗的2型糖尿病(T2DM... 目的 探讨糖化血红蛋白变异指数(HGI)、血清β2微球蛋白(β2-MG)及高迁移族蛋白B1(HMGB1)在2型糖尿病视网膜病变(DR)早期诊断中的临床价值。方法 回顾性选取2020年1月~2023年1月在皖西卫生职业学院附属阜南县中医院治疗的2型糖尿病(T2DM)合并DR患者112例作为观察组,同时选取同期在本院治疗的单纯T2DM患者54例作为对照组,比较两组患者一般资料及HGI、β2-MG、HMGB1水平,多元logistic回归模型分析影响T2DM患者并发DR的危险因素,绘制受试者工作特征(ROC)曲线,分析HGI、β2-MG、HMGB1三者单独及联合检测对T2DM患者并发DR的诊断效能。结果 观察组合并高血压占比率高于对照组,差异有统计学意义(χ^(2)=5.372,P<0.05);观察组T2DM病程、FPG、HbA1c、LDL-C、HGI、β2-MG、HMGB1水平均高于对照组,差异均有统计学意义(t=5.303、2.711、3.135、2.391、14.958、11.028、5.695,P<0.05)。多元logistic回归分析显示,合并高血压、HbA1c、HGI、β2-MG、HMGB1为影响T2DM患者并发DR的危险因素(P<0.05);ROC曲线结果显示,HGI、β2-MG、HMGB1单独T2DM患者并发DR的曲线下面积(AUC)分别为0.822、0.785、0.753,而三者联合检测的AUC为0.909,高于单一检测(P<0.05)。结论 相较于单纯T2DM患者,合并DR的T2DM患者的HGI、β2-MG、HMGB1水平异常升高,且上述指标均为DR发生的危险因素,通过联合检测三者水平对DR具有较好的诊断效能。 展开更多
关键词 糖化血红蛋白变异指数 Β2微球蛋白 高迁移族蛋白B1 糖尿病视网膜病变 早期诊断
下载PDF
糖尿病眼底视网膜病变辅助诊断系统设计
13
作者 高芷琪 裴晓敏 《长江信息通信》 2024年第10期13-17,共5页
糖尿病视网膜病变筛查对于患者预防致盲有重要意义。基于计算机的辅助诊断系统可快速而精确地处理分析图像数据,为医生提供客观的数字化诊断依据。然而,当病理图像分辨率较低或类别之间差异小时,分类精度仍有待提升。文章设计融合注意... 糖尿病视网膜病变筛查对于患者预防致盲有重要意义。基于计算机的辅助诊断系统可快速而精确地处理分析图像数据,为医生提供客观的数字化诊断依据。然而,当病理图像分辨率较低或类别之间差异小时,分类精度仍有待提升。文章设计融合注意力机制(CBAM Convolutional Block Attention Module)的ResNet深度学习网络模型应用于糖尿病视网膜病变筛查。设计微信小程序方便用户查看检测结果,实现糖尿病眼底视网膜病变辅助系统。实验结果表明,本文所设计的系统对糖尿病视网膜病变的识别准确率可达94.72%,灵敏度为92.67%,特异度为99.83%,可精确检测糖尿病视网膜病变,且为患者提供了便捷的客户端平台。 展开更多
关键词 糖尿病视网膜病变 计算机辅助诊断 注意力机制 ResNet
下载PDF
铜蓝蛋白用于糖尿病视网膜病变诊断的临床价值
14
作者 肇莉莉 喻磊 +1 位作者 王萍 马为梅 《检验医学与临床》 CAS 2024年第9期1307-1311,共5页
目的分析铜蓝蛋白(CP)水平作为氧化应激标志物诊断糖尿病视网膜病变(DR)的临床价值。方法纳入2016年1月至2020年12月该院收治的196例2型糖尿病(T2DM)患者作为研究对象,根据眼科检查结果,分为单纯T2DM患者(DM组)以及DR患者(DR组),另纳入... 目的分析铜蓝蛋白(CP)水平作为氧化应激标志物诊断糖尿病视网膜病变(DR)的临床价值。方法纳入2016年1月至2020年12月该院收治的196例2型糖尿病(T2DM)患者作为研究对象,根据眼科检查结果,分为单纯T2DM患者(DM组)以及DR患者(DR组),另纳入同期70例无糖尿病患者作为对照组。根据眼底镜检和血管造影及国际临床DR严重程度分级将DR患者分为轻度及中度非增生性DR(NPDR)86例、重度NPDR及增生性DR(PDR)32例。房水及血清CP测定分别采用Somani法和Ambade法。房水超氧化物歧化酶(SOD)、丙二醛(MDA)采用酶联免疫吸附试验(ELISA)进行测定。采用Spearman相关分析DR患者血清CP、房水CP水平与房水氧化应激指标的相关性。绘制受试者工作特征(ROC)曲线分析血清CP水平对DR的诊断价值。结果DR组血清CP水平显著高于对照组和DM组(P<0.001)。Spearman相关性分析结果显示,DR患者的血清CP水平与房水CP及MDA水平均呈正相关(r=0.620,P<0.001;r=0.198,P=0.001),与房水SOD水平呈负相关性(r=—0.196,P=0.001)。多因素Logistic回归分析结果显示,血清CP水平为T2DM患者发生DR或者DR患者进展至重度NPDR/PDR的独立预测因子(P<0.05)。ROC曲线结果显示,血清CP水平用于DR诊断、DR进展、DR早期诊断的曲线下面积分别为0.833(95%CI:0.776~0.889)、0.890(95%CI:0.827~0.953)、0.777(95%CI:0.705~0.848)。结论血清CP水平在DR患者中呈异常高表达,且随着DR病变严重程度的增加而升高。检测血清CP水平有助于DR的诊断或反映疾病进展程度。 展开更多
关键词 铜蓝蛋白 氧化应激 糖尿病视网膜病变 疾病进展 诊断
下载PDF
HGI、HMGB1联合检验在2型糖尿病视网膜病变早期诊断中的临床价值
15
作者 李小燕 李秀兰 +1 位作者 王情 黄宇龙 《糖尿病新世界》 2024年第13期41-44,共4页
目的分析糖化血红蛋白变异指数(hemoglobin glycation variability index,HGI),高迁移族蛋白B1(high-migration group protein B1,HMGB1)联合检测在糖尿病视网膜病变(diabetic retinopathy,DR)早期诊断中的临床价值。方法选取2023年2—1... 目的分析糖化血红蛋白变异指数(hemoglobin glycation variability index,HGI),高迁移族蛋白B1(high-migration group protein B1,HMGB1)联合检测在糖尿病视网膜病变(diabetic retinopathy,DR)早期诊断中的临床价值。方法选取2023年2—10月泉州市第一医院收治的70例2型糖尿病患者为研究对象,依据是否并发视网膜病变将其划分为DR组(33例)、非DR组(37例)。比较两组HGI、HMGB1水平,分析HGI、HMGB1联合检测在DR早期诊断中的临床价值。结果DR组HGI、HMGB1表达水平高于非DR组,差异有统计学意义(P均<0.05)。HGI检出DR阳性32例,真阳性25例;HMGB1检出阳性31例,真阳性27例;两项联合检出阳性34例,真阳性32例。HGI阳性检出率为45.71%(32/70),HMGB1阳性检出率为44.29%(31/70),两项联合阳性检出率为48.57%(34/70)。受试者操作特征曲线结果显示,HGI、HMGB1联合检测灵敏度、特异度高于单一指标检测结果,曲线下面积为0.916。结论HGI、HMGB1联合检测在DR早期诊断中诊断效能高,HGI、HMGB1表达水平升高提示DR病情进展,有助于为临床早期疾病诊断提供参考。 展开更多
关键词 HGI HMGB1 2型糖尿病 视网膜病变 早期诊断
下载PDF
融合注意力机制模型的视网膜病变检测应用研究
16
作者 徐常转 《现代计算机》 2024年第16期51-56,共6页
基于糖尿病性视网膜病变高发病率、诊断过程耗时、经验丰富医生短缺的问题,开发一套辅助视网膜病变诊断系统显得尤为重要。前端交互采用Vue和Antd技术,后端架构使用FastAPI和Nginx,将深度学习算法部署在Web端上,开发了一套糖尿病性视网... 基于糖尿病性视网膜病变高发病率、诊断过程耗时、经验丰富医生短缺的问题,开发一套辅助视网膜病变诊断系统显得尤为重要。前端交互采用Vue和Antd技术,后端架构使用FastAPI和Nginx,将深度学习算法部署在Web端上,开发了一套糖尿病性视网膜病变检测系统。该系统帮助患者及时了解病情进展,医生能够根据系统提供的分割和预测结果为患者制定合适的治疗方案,大幅缩短了诊断时间,有助于糖尿病患者疾病的早期发现和治疗。 展开更多
关键词 糖尿病性视网膜病变 辅助诊疗系统 深度学习 系统设计
下载PDF
妊娠期糖尿病视网膜病变患者血清miR-200c-3p、 miR-20b-5p表达水平及检测临床意义
17
作者 李威威 杨倩 +6 位作者 常瑚 宋森 李世强 程亚辉 岳钟 冯丽 肖博文 《陕西医学杂志》 CAS 2023年第8期1076-1080,共5页
目的:探讨妊娠期糖尿病视网膜病变(DR)患者血清miR-200c-3p、miR-20b-5p水平变化及检测临床意义。方法:选择妊娠期糖尿病孕妇80例(GDM组)和DR孕妇75例(DR组),正常妊娠期女性95例(对照组)。采用qRT-PCR法对受试者血清miR-200c-3p、miR-20... 目的:探讨妊娠期糖尿病视网膜病变(DR)患者血清miR-200c-3p、miR-20b-5p水平变化及检测临床意义。方法:选择妊娠期糖尿病孕妇80例(GDM组)和DR孕妇75例(DR组),正常妊娠期女性95例(对照组)。采用qRT-PCR法对受试者血清miR-200c-3p、miR-20b-5p水平进行测定,采用全自动生化分析仪对受试者低密度脂胆固醇(LDL-C)、三酰甘油(TG)、总胆固醇(TC)进行测定,采用血糖检测仪对受试者空腹血糖(FPG)、餐后2 h血糖(2 hPG)进行测定。结果:GDM组、DR组患者FPG、2 hPG、LDL-C、TG、TC、miR-200c-3p、miR-20b-5p值显著高于对照组(均P<0.05);DR组患者FPG、2 hPG、LDL-C、TG、TC、miR-200c-3p、miR-20b-5p值显著高于GDM组(均P<0.05);随着病情严重程度的增加,DR组患者miR-200c-3p、miR-20b-5p水平显著升高(均P<0.05);预后不良组DR患者FPG、2 hPG、LDL-C、TG、TC、miR-200c-3p、miR-20b-5p值显著高于预后良好组(均P<0.05);多因素Logistic回归分析显示血清miR-200c-3p、miR-20b-5p水平升高为DR患者发生预后不良的危险因素;ROC曲线结果显示,血清miR-200c-3p、miR-20b-5p、两者联合诊断DR患者不良预后曲线下面积(AUC)为0.927(95%CI:0.843~0.974)、0.848(95%CI:0.746~0.920)、0.985(95%CI:0.924~0.999)。结论:DR患者血清miR-200c-3p、miR-20b-5p水平升高,对DR不良预后具有一定的预测价值。 展开更多
关键词 妊娠期糖尿病视网膜病变 miR-200c-3p miR-20b-5p 表达水平 预后 诊断
下载PDF
母源性表达基因8在糖尿病视网膜病变中的作用 被引量:1
18
作者 王蓄杨 陈王灵 《福建医科大学学报》 2023年第2期89-95,共7页
目的 探讨长链非编码RNA(lncRNA)母源性表达基因8(MEG8)在糖尿病(DM)视网膜病变(DR)中的表达情况,并进一步评估MEG8对DR的诊断价值及对DR的调控机制。方法 采用实时荧光定量PCR(qRT-PCR)检测全部受试者血清中MEG8的表达水平;受试者工作... 目的 探讨长链非编码RNA(lncRNA)母源性表达基因8(MEG8)在糖尿病(DM)视网膜病变(DR)中的表达情况,并进一步评估MEG8对DR的诊断价值及对DR的调控机制。方法 采用实时荧光定量PCR(qRT-PCR)检测全部受试者血清中MEG8的表达水平;受试者工作特征(ROC)曲线评估MEG8对DR的诊断价值;CCK-8法和Transwell实验评估MEG8对高糖诱导的人视网膜微血管内皮细胞(HRMECs)增殖和迁移的影响;荧光素酶报告基因实验验证MEG8与miR-15a-5p的3’-非翻译区(3’-UTR)的相互作用。结果 与对照组比较,DM组的MEG8水平显著增高,DR组的MEG8水平较DM组更高;miR-15a-5p的表达趋势与MEG8相反;MEG8的表达水平与DM病程等指标呈正相关;ROC曲线显示,血清MEG8具有区分DM和DR的能力。高糖诱导后HRMECs的MEG8水平显著增高,且高糖诱导促进HRMECs的增殖和迁移能力。通过细胞转染MEG8小干扰RNA下调胞内MEG8水平后,HRMECs的增殖和迁移均受到不同程度的抑制作用;荧光素酶报告基因实验证实,MEG8直接靶向miR-15a-5p, miR-15a-5p的水平与MEG8的水平呈显著负相关。结论 MEG8在DR患者中失调,ROC曲线显示MEG8对DM和DR有区分价值。体外DR细胞模型可见,过表达的MEG8通过靶向调控miR-15a-5p,对高糖诱导的HRMECs的增殖和迁移产生促进作用。初步证实MEG8可能参与对DR的调控。 展开更多
关键词 糖尿病视网膜病变 母源性表达基因8 miR-15a-5p 诊断
下载PDF
血清和房水核心蛋白多糖水平与糖尿病视网膜病变的关系 被引量:1
19
作者 马建洲 孙红彬 马丽娜 《东南大学学报(医学版)》 CAS 2023年第4期584-589,共6页
目的:分析血清和房水核心蛋白多糖(decorin, DCN)水平与糖尿病视网膜病变(DR)的关系。方法:纳入2020年2月至2021年10月中国人民解放军空军第986医院收治的133例2型糖尿病(T2DM)患者,根据眼科检查结果分为非DR组(n=39)和DR组(n=94),另纳... 目的:分析血清和房水核心蛋白多糖(decorin, DCN)水平与糖尿病视网膜病变(DR)的关系。方法:纳入2020年2月至2021年10月中国人民解放军空军第986医院收治的133例2型糖尿病(T2DM)患者,根据眼科检查结果分为非DR组(n=39)和DR组(n=94),另纳入同期35例白内障患者作为对照组。使用酶联免疫吸附夹心法检测血清和房水DCN水平。结果:DR组血清和房水DCN水平显著高于对照组和非DR组(P<0.001)。经Spearman及多元线性回归分析,房水DCN水平与DM病程及血清DCN水平均呈正相关(r值分别为0.200、0.360,P<0.05)。经多因素Logistic回归分析,血清DCN水平为T2DM患者发生DR的独立预测因素(P<0.05)。重度非增殖性DR及增殖性DR患者的血清DCN水平[5 811.91(3 815.93,10 613.32)ng·ml-1]显著高于轻度非增殖性DR[3 733.28(2 292.13,4 700.71)ng·ml-1]及中度非增殖性DR患者[4 071.26(2 815.29,6 487.09) ng·ml-1](F=10.861,P<0.001)。经受试者工作特征曲线分析,血清DCN水平诊断T2DM患者是否发生DR的曲线下面积(AUC)为0.732(95%CI:0.645~0.818),同样诊断重度非增殖性DR及增殖性DR的AUC为0.732(95%CI:0.617~0.846)。结论:血清和房水DCN水平与DR的发生和进展呈正相关,血清DCN可作为临床上预测DR发生和进展相关的生物标志物。 展开更多
关键词 糖尿病视网膜病变 核心蛋白多糖 2型糖尿病 诊断 疾病进展
下载PDF
DR患者外周血miR-1281和miR-122的变化及其与视网膜病变严重程度的关系
20
作者 田甜 严晶 代娇 《大理大学学报》 2023年第2期56-61,共6页
目的:探究糖尿病视网膜病变(DR)患者外周血miR-1281和miR-122的变化及临床意义。方法:选取2型糖尿病非视网膜病变患者(NDR组)55例、非增殖型DR患者(NPDR组)42例、增殖型DR患者(PDR组)30例及健康人群40例(对照组)作为研究对象,使用实时... 目的:探究糖尿病视网膜病变(DR)患者外周血miR-1281和miR-122的变化及临床意义。方法:选取2型糖尿病非视网膜病变患者(NDR组)55例、非增殖型DR患者(NPDR组)42例、增殖型DR患者(PDR组)30例及健康人群40例(对照组)作为研究对象,使用实时荧光定量聚合酶链反应测定其血清miR-122和miR-1281的相对表达量。结果:NPDR组和PDR组患者血清miR-122水平显著高于对照组和NDR组,且PDR组患者显著高于NPDR组,差异有统计学意义(P<0.05);miR-1281水平在NDR组、NPDR组和PDR组中均显著高于对照组,且其表达水平在NDR组、NPDR组和PDR组中显著上升,差异有统计学意义(P<0.05)。血清miR-122和miR-1281与患者病程、糖化血红蛋白及HOMA-IR指数均存在显著正相关;miR-122和miR-1281对于鉴别增殖型DR的曲线下面积分别为0.81和0.86。结论:血清miR-122和miR-1281表达在DR患者中增加,可用作DR严重程度的评价指标。 展开更多
关键词 MIR-122 miR-1281 2型糖尿病 糖尿病视网膜病变 诊断
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部