期刊文献+
共找到224,092篇文章
< 1 2 250 >
每页显示 20 50 100
Avoiding misdiagnosis of multilocular thymic cysts as malignant tumors on computer tomography
1
作者 Yu-Hong Zhang Yan-Miao Liu +2 位作者 Kai-Li Shen Jing-Jing Wu Fu-Shan Tang 《World Journal of Clinical Cases》 SCIE 2024年第19期3671-3675,共5页
This editorial provides insights from a case report by Sun et al published in the World Journal of Clinical Cases.The case report focuses on a case where a multilocular thymic cyst(MTC)was misdiagnosed as a thymic tum... This editorial provides insights from a case report by Sun et al published in the World Journal of Clinical Cases.The case report focuses on a case where a multilocular thymic cyst(MTC)was misdiagnosed as a thymic tumor,resulting in an unnecessary surgical procedure.Both MTCs and thymic tumors are rare conditions that heavily rely on radiological imaging for accurate diagnosis.However,the similarity in their imaging presentations can lead to misinterpretation,resulting in unnecessary surgical procedures.Due to the ongoing lack of comprehensive knowledge about MTCs and thymic tumors,we offer a summary of diagnostic techniques documented in recent literature and examine potential causes of misdiagnosis.When computer tomography(CT)values surpass 20 Hounsfield units and display comparable morphology,there is a risk of misdiagnosing MTCs as thymic tumors.Employing various differential diagnostic methods like biopsy,molecular biology,multi-slice CT,CT functional imaging,positron emission tomography/CT molecular functional imaging,magnetic resonance imaging and radiomics,proves advantageous in reducing clinical misdiagnosis.A deeper understanding of these conditions requires increased attention and exploration by healthcare providers.Moreover,the continued advancement and utilization of various diagnostic methods are expected to enhance precise diagnoses,provide appropriate treatment options,and improve the quality of life for patients with thymic tumors and MTCs in the future.continued advancement and utilization of various diagnostic methods are expected to enhance precise diagnoses,provide appropriate treatment options,and improve the quality of life for patients with thymic tumors and MTCs in the future. 展开更多
关键词 Thymic tumor Multilocular thymic cyst MISdiagnosis Differential diagnosis Imaging manifestation Computed tomography
下载PDF
Artificial intelligence for characterization of diminutive colorectal polyps:A feasibility study comparing two computer-aided diagnosis systems
2
作者 Quirine Eunice Wennie van der Zander Ramon M Schreuder +9 位作者 Ayla Thijssen Carolus H J Kusters Nikoo Dehghani Thom Scheeve Bjorn Winkens Mirjam C M van der Ende-van Loon Peter H N de With Fons van der Sommen Ad A M Masclee Erik J Schoon 《Artificial Intelligence in Gastrointestinal Endoscopy》 2024年第1期11-22,共12页
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly... BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP. 展开更多
关键词 Artificial intelligence Colorectal polyp characterization computer aided diagnosis Diminutive colorectal polyps Optical diagnosis Self-critical artificial intelligence
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
3
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
RepBoTNet-CESA:An Alzheimer’s Disease Computer Aided Diagnosis Method Using Structural Reparameterization BoTNet and Cubic Embedding Self Attention
4
作者 Xiabin Zhang Zhongyi Hu +1 位作者 Lei Xiao Hui Huang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2879-2905,共27页
Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on l... Various deep learning models have been proposed for the accurate assisted diagnosis of early-stage Alzheimer’s disease(AD).Most studies predominantly employ Convolutional Neural Networks(CNNs),which focus solely on local features,thus encountering difficulties in handling global features.In contrast to natural images,Structural Magnetic Resonance Imaging(sMRI)images exhibit a higher number of channel dimensions.However,during the Position Embedding stage ofMulti Head Self Attention(MHSA),the coded information related to the channel dimension is disregarded.To tackle these issues,we propose theRepBoTNet-CESA network,an advanced AD-aided diagnostic model that is capable of learning local and global features simultaneously.It combines the advantages of CNN networks in capturing local information and Transformer networks in integrating global information,reducing computational costs while achieving excellent classification performance.Moreover,it uses the Cubic Embedding Self Attention(CESA)proposed in this paper to incorporate the channel code information,enhancing the classification performance within the Transformer structure.Finally,the RepBoTNet-CESA performs well in various AD-aided diagnosis tasks,with an accuracy of 96.58%,precision of 97.26%,and recall of 96.23%in the AD/NC task;an accuracy of 92.75%,precision of 92.84%,and recall of 93.18%in the EMCI/NC task;and an accuracy of 80.97%,precision of 83.86%,and recall of 80.91%in the AD/EMCI/LMCI/NC task.This demonstrates that RepBoTNet-CESA delivers outstanding outcomes in various AD-aided diagnostic tasks.Furthermore,our study has shown that MHSA exhibits superior performance compared to conventional attention mechanisms in enhancing ResNet performance.Besides,the Deeper RepBoTNet-CESA network fails to make further progress in AD-aided diagnostic tasks. 展开更多
关键词 Alzheimer CNN structural reparameterization multi head self attention computer aided diagnosis
下载PDF
Artificial intelligence assisted pterygium diagnosis:current status and perspectives 被引量:3
5
作者 Bang Chen Xin-Wen Fang +7 位作者 Mao-Nian Wu Shao-Jun Zhu Bo Zheng Bang-Quan Liu Tao Wu Xiang-Qian Hong Jian-Tao Wang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第9期1386-1394,共9页
Pterygium is a prevalent ocular disease that can cause discomfort and vision impairment.Early and accurate diagnosis is essential for effective management.Recently,artificial intelligence(AI)has shown promising potent... Pterygium is a prevalent ocular disease that can cause discomfort and vision impairment.Early and accurate diagnosis is essential for effective management.Recently,artificial intelligence(AI)has shown promising potential in assisting clinicians with pterygium diagnosis.This paper provides an overview of AI-assisted pterygium diagnosis,including the AI techniques used such as machine learning,deep learning,and computer vision.Furthermore,recent studies that have evaluated the diagnostic performance of AI-based systems for pterygium detection,classification and segmentation were summarized.The advantages and limitations of AI-assisted pterygium diagnosis and discuss potential future developments in this field were also analyzed.The review aims to provide insights into the current state-of-the-art of AI and its potential applications in pterygium diagnosis,which may facilitate the development of more efficient and accurate diagnostic tools for this common ocular disease. 展开更多
关键词 PTERYGIUM intelligent diagnosis artificial intelligence deep learning machine learning
下载PDF
Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification 被引量:1
6
作者 M.Uvaneshwari M.Baskar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1811-1826,共16页
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ... The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods. 展开更多
关键词 Brain tumor machine learning SEGMENTATION computer-aided diagnosis skull stripping
下载PDF
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis 被引量:1
7
作者 Yun-Fang Liu Yu-Ke Ji +3 位作者 Fang-Qin Fei Nai-Mei Chen Zhen-Tao Zhu Xing-Zhen Fei 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第9期1395-1405,共11页
Diabetic retinopathy(DR)is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide.Early detection and treatment can effectively delay vision decline and even blindness in pa... Diabetic retinopathy(DR)is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide.Early detection and treatment can effectively delay vision decline and even blindness in patients with DR.In recent years,artificial intelligence(AI)models constructed by machine learning and deep learning(DL)algorithms have been widely used in ophthalmology research,especially in diagnosing and treating ophthalmic diseases,particularly DR.Regarding DR,AI has mainly been used in its diagnosis,grading,and lesion recognition and segmentation,and good research and application results have been achieved.This study summarizes the research progress in AI models based on machine learning and DL algorithms for DR diagnosis and discusses some limitations and challenges in AI research. 展开更多
关键词 diabetic retinopathy artificial intelligence machine learning deep learning diagnosis GRADING lesions segmentation
下载PDF
Computer-Aided Diagnosis for Tuberculosis Classification with Water Strider Optimization Algorithm 被引量:1
8
作者 José Escorcia-Gutierrez Roosvel Soto-Diaz +4 位作者 Natasha Madera Carlos Soto Francisco Burgos-Florez Alexander Rodríguez Romany F.Mansour 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1337-1353,共17页
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin... Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms. 展开更多
关键词 computer-aided diagnosis water strider optimization deep learning chest x-rays transfer learning
下载PDF
Value of procalcitonin and presepsin in the diagnosis and severity stratification of sepsis and septic shock 被引量:2
9
作者 Enfeng Ren Hongli Xiao +3 位作者 Guoxing Wang Yongzhen Zhao Han Yu Chunsheng Li 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第2期135-138,共4页
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnor... Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression. 展开更多
关键词 diagnosis SEPSIS MORTALITY
下载PDF
Stage at diagnosis of colorectal cancer through diagnostic route:Who should be screened? 被引量:6
10
作者 Nobukazu Agatsuma Takahiro Utsumi +11 位作者 Yoshitaka Nishikawa Takahiro Horimatsu Takeshi Seta Yukitaka Yamashita Yukari Tanaka Takahiro Inoue Yuki Nakanishi Takahiro Shimizu Mikako Ohno Akane Fukushima Takeo Nakayama Hiroshi Seno 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1368-1376,共9页
BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of... BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities. 展开更多
关键词 Colorectal neoplasms Cancer registry Diagnostic route Cancer screening Stage at diagnosis
下载PDF
Dynamic Vision Enabled Contactless Cross-Domain Machine Fault Diagnosis With Neuromorphic Computing 被引量:1
11
作者 Xinrui Chen Xiang Li +3 位作者 Shupeng Yu Yaguo Lei Naipeng Li Bin Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期788-790,共3页
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ... Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision. 展开更多
关键词 FAULT LESS diagnosis
下载PDF
Handheld bedside ultrasound in the diagnosis of myocarditis 被引量:1
12
作者 Frank Wheeler Robin Lahr +2 位作者 James Espinosa Alan Lucerna Henry Schuitema 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第1期73-74,共2页
Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]S... Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment. 展开更多
关键词 diagnosis MYOCARDITIS FEVER
下载PDF
Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation 被引量:1
13
作者 Chang-Sheng MA Shu-Lin WU +4 位作者 Shao-Wen LIU Ya-Ling HAN Chinese Society of Cardiology Chinese Medical Association Heart Rhythm Committee of Chinese Society of Biomedical Engineering 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第3期251-314,共64页
Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,the... Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control. 展开更多
关键词 PREVENTION SUSTAINED diagnosis
下载PDF
Circular RNAs in breast cancer diagnosis,treatment and prognosis 被引量:1
14
作者 XIAOJIA HUANG CAILU SONG +2 位作者 JINHUI ZHANG LEWEI ZHU HAILIN TANG 《Oncology Research》 SCIE 2024年第2期241-249,共9页
Breast cancer has surpassed lung cancer to become the most common malignancy worldwide.The incidence rate and mortality rate of breast cancer continue to rise,which leads to a great burden on public health.Circular RN... Breast cancer has surpassed lung cancer to become the most common malignancy worldwide.The incidence rate and mortality rate of breast cancer continue to rise,which leads to a great burden on public health.Circular RNAs(circRNAs),a new class of noncoding RNAs(ncRNAs),have been recognized as important oncogenes or suppressors in regulating cancer initiation and progression.In breast cancer,circRNAs have significant roles in tumorigenesis,recurrence and multidrug resistance that are mediated by various mechanisms.Therefore,circRNAs may serve as promising targets of therapeutic strategies for breast cancer management.This study reviews the most recent studies about the biosynthesis and characteristics of circRNAs in diagnosis,treatment and prognosis evaluation,as well as the value of circRNAs in clinical applications as biomarkers or therapeutic targets in breast cancer.Understanding the mechanisms by which circRNAs function could help transform basic research into clinical applications and facilitate the development of novel circRNA-based therapeutic strategies for breast cancer treatment. 展开更多
关键词 CircRNA Breast cancer diagnosis TREATMENT BIOMARKER
下载PDF
CORRIGENDUM:Artificial intelligence-assisted pterygium diagnosis:current status and perspectives
15
作者 Bang Chen Xin-Wen Fang +7 位作者 Mao-Nian Wu Shao-Jun Zhu Bo Zheng Bang-Quan Liu Tao Wu Xiang-Qian Hong Jian-Tao Wang Wei-Hua Yang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第12期2135-2135,共1页
The authors would like to make the following change to the above article:Co-first authors:Bang Chen and Xin-Wen Fang.The authors apologize for any inconvenience caused by this error.
关键词 diagnosis INTELLIGENCE MAKE
下载PDF
Marker Ki-67 is a potential biomarker for the diagnosis and prognosis of prostate cancer based on two cohorts 被引量:1
16
作者 Zhen Song Qi Zhou +2 位作者 Jiang-Lei Zhang Jun Ouyang Zhi-Yu Zhang 《World Journal of Clinical Cases》 SCIE 2024年第1期32-41,共10页
BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been pr... BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been previously demonstrated to correlate with the proliferation and metastasis of various cancer cells,including those of PCa.Hence,verifying the association between MKI67 and the diagnosis and prognosis of PCa,using bioinformatics databases and clinical data analysis,carries significant clinical implications.AIM To explore the diagnostic and prognostic efficacy of antigens identified by MKI67 expression in PCa.METHODS For cohort 1,the efficacy of MKI67 diagnosis was evaluated using data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.For cohort 2,the diagnostic and prognostic power of MKI67 expression was further validated using data from 271 patients with clinical PCa.RESULTS In cohort 1,MKI67 expression was correlated with prostate-specific antigen(PSA),Gleason Score,T stage,and N stage.The receiver operating characteristic(ROC)curve showed a strong diagnostic ability,and the Kaplan-Meier method demonstrated that MKI67 expression was negatively associated with the progression-free interval(PFI).The time-ROC curve displayed a weak prognostic capability for MKI67 expression in PCa.In cohort 2,MKI67 expression was significantly related to the Gleason Score,T stage,and N stage;however,it was negatively associated with the PFI.The time-ROC curve revealed the stronger prognostic capability of MKI67 in patients with PCa.Multivariate COX regression analysis was performed to select risk factors,including PSA level,N stage,and MKI67 expression.A nomogram was established to predict the 3-year PFI.CONCLUSION MKI67 expression was positively associated with the Gleason Score,T stage,and N stage and showed a strong diagnostic and prognostic ability in PCa. 展开更多
关键词 Marker Ki-67 Prostate cancer BIOMARKER diagnosis PROGNOSIS
下载PDF
Diagnosis of poorly differentiated adenocarcinoma of the stomach by confocal laser endomicroscopy:A case report 被引量:2
17
作者 Jia-Xin Lou Yong Wu +3 位作者 Muren Huhe Jing-Jie Zhang Dong-Wu Jia Zhen-Yu Jiang 《World Journal of Clinical Cases》 SCIE 2024年第8期1481-1486,共6页
BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE ca... BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions. 展开更多
关键词 Confocal laser endomicroscopy Poorly differentiated gastric adenocarcinoma diagnosis Early stage Case report
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
18
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience DATA-DRIVEN fault diagnosis
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
19
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Deep learning-assisted diagnosis of femoral trochlear dysplasia based on magnetic resonance imaging measurements
20
作者 Sheng-Ming Xu Dong Dong +3 位作者 Wei Li Tian Bai Ming-Zhu Zhu Gui-Shan Gu 《World Journal of Clinical Cases》 SCIE 2023年第7期1477-1487,共11页
BACKGROUND Femoral trochlear dysplasia(FTD)is an important risk factor for patellar instability.Dejour classification is widely used at present and relies on standard lateral X-rays,which are not common in clinical wo... BACKGROUND Femoral trochlear dysplasia(FTD)is an important risk factor for patellar instability.Dejour classification is widely used at present and relies on standard lateral X-rays,which are not common in clinical work.Therefore,magnetic resonance imaging(MRI)has become the first choice for the diagnosis of FTD.However,manually measuring is tedious,time-consuming,and easily produces great variability.AIM To use artificial intelligence(AI)to assist diagnosing FTD on MRI images and to evaluate its reliability.METHODS We searched 464 knee MRI cases between January 2019 and December 2020,including FTD(n=202)and normal trochlea(n=252).This paper adopts the heatmap regression method to detect the key points network.For the final evaluation,several metrics(accuracy,sensitivity,specificity,etc.)were calculated.RESULTS The accuracy,sensitivity,specificity,positive predictive value and negative predictive value of the AI model ranged from 0.74-0.96.All values were superior to junior doctors and intermediate doctors,similar to senior doctors.However,diagnostic time was much lower than that of junior doctors and intermediate doctors.CONCLUSION The diagnosis of FTD on knee MRI can be aided by AI and can be achieved with a high level of accuracy. 展开更多
关键词 Femoral trochlear dysplasia Deep learning Artificial intelligence Magnetic resonance imaging diagnosis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部