The machine is used for precisiongrinding of hardened cylindricalgears with medium module inbatches for the industries ofaircraft,automobile,machine tool,gear box and various transmissiondevices.
Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the m...Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.展开更多
The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive th...The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.展开更多
TI worm drive consists of involute helical gear and its enveloping Hourglass worm. Accurate grinding for TI worm is the key manufacture technology for TI worm gearing being popularized and applied.According to the the...TI worm drive consists of involute helical gear and its enveloping Hourglass worm. Accurate grinding for TI worm is the key manufacture technology for TI worm gearing being popularized and applied.According to the theory of gear mesh, the equations of tooth surface of worm drive are gained, and the equation of the axial section profile of grinding wheel that can accurately grind TI worm is extracted. Simultaneously, the relation of position and motion between TI worm and grinding wheel are expounded. The method for precisely grinding single enveloping TI worm is obtained.展开更多
文摘The machine is used for precisiongrinding of hardened cylindricalgears with medium module inbatches for the industries ofaircraft,automobile,machine tool,gear box and various transmissiondevices.
基金Project(2019 YFB 2004700)supported by the National Key R&D Project of ChinaProject(HTL-O-19 K 02)supported by National Key Laboratory of Science and Technology on Helicopter Transmission,Nanjing University of Aeronautics and Astronautics,China。
文摘Worm grinding has been applied to manufacture gears to pursue high accuracy and fine surface finish.When the worm used to grind face gears is manufactured with multi-axis computer numerical control(CNC)machining,the machining accuracy is usually improved by increasing the number of tool paths with more time cost.Differently,this work proposes a generated method to improve the efficiency by dressing the worm surface with only one path,and a closed-loop manufacturing process is applied to ensure the machining accuracy.According to an advanced geometric analysis,the worm surface is practically approximated as a swept surface generated by a planar curve.Meanwhile,this curve is applied as the profile of a dressing wheel,which is used to dress the worm surface.The practical machining is carried out in a CNC machine tool,which was originally used to grind helical gears.Finally,a closed-loop manufacturing process including machining,measurement,and modification is proposed to compensate the machining errors.The proposed method is validated with simulations and practical experiments.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘The machining principle and realization method for the continuous generative grinding face gear by a worm wheel are introduced. Based on a five-axis linked CNC grinding machine, a new method is presented to deprive the equation of face gear error tooth surface by assuming the tool surface as the error surface, where actual tool installation position error is introduced into the equation of virtual shaper cutter. Surface equations and 3-D models for the face gear and the worm wheel involving four kinds of tool installation errors are established. When compared, the face gear tooth surface machined in VERICUT software for simulation based on this new method and the one obtained based on real process(grinding face gear by using a theoretical worm wheel with actual position errors) are found to be coincident, which proves the validity and feasibility of this new method. By using mesh planning for the rotating projection plane of the face gear work tooth surface, the deviation values of the tooth surface and the difference surface are acquired, and the influence of four kinds of errors on the face gear tooth surface is analyzed. Accordingly, this work provides a theoretical reference for assembly craft of worm wheel, improvement of face gear machining accuracy and modification of error tooth surface.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50275103).
文摘TI worm drive consists of involute helical gear and its enveloping Hourglass worm. Accurate grinding for TI worm is the key manufacture technology for TI worm gearing being popularized and applied.According to the theory of gear mesh, the equations of tooth surface of worm drive are gained, and the equation of the axial section profile of grinding wheel that can accurately grind TI worm is extracted. Simultaneously, the relation of position and motion between TI worm and grinding wheel are expounded. The method for precisely grinding single enveloping TI worm is obtained.