The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative ana...The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.展开更多
Dianthus spiculifolius is a perennial herbaceous flower with strong environmental adaptability and is an important ornamental ground cover plant.In this study,seeds of D.spiculifolius were used as explants for callus ...Dianthus spiculifolius is a perennial herbaceous flower with strong environmental adaptability and is an important ornamental ground cover plant.In this study,seeds of D.spiculifolius were used as explants for callus induction,adventitious bud differentiation,and rooting by adding different concentrations of 2,4-dichlorophenoxyacetic acid(2,4-D),6-benzyl aminopurine(6-BA),and naphthaleneacetic acid(NAA)to Murashige and Skoog medium.The calli generated were co-cultured with Agrobacterium tumefaciens EHA105 containing pBI121-GUS or pBI121-GFP plasmids for 30 min,and transgenic regenerated plants were obtained by kanamycin(30mg·L^−1)screening.RT-PCR confirmed the stable expression of the exogenous GUS and GFP genes in the D.spiculifolius.Theβ-glucuronidase(GUS)histochemical staining confirmed GUS gene expression in transgenic calli,adventitious buds,and regenerated plants of D.spiculifolius.The green fluorescent protein(GFP)visual analysis showed GFP gene expression in transgenic calli.Furthermore,subcellular localization analysis showed that the three organelle marker proteins were not only successfully expressed but also accurately localized to their corresponding organelles in D.spiculifolius callus cells.These results indicated a successful establishment of a reliable and efficient A.tumefaciens-mediated genetic transformation system,which will contribute to functional gene research and genetic improvement of D.spiculifolius.展开更多
A new cyclopeptide as well as a known cyclopeptide were isolated from the whole plants of Dianthus caryophyllus. Their structures were elucidated as cyclo (-Thr-Gly-Pro-Tyr-Phe-) (1) and cyclo (-Ala-Gly-Ser-IIe-P...A new cyclopeptide as well as a known cyclopeptide were isolated from the whole plants of Dianthus caryophyllus. Their structures were elucidated as cyclo (-Thr-Gly-Pro-Tyr-Phe-) (1) and cyclo (-Ala-Gly-Ser-IIe-Phe-Phe-) (2) by means of chemical and spectroscopic methods including MS, 1D and 2D NMR techniques.展开更多
This study addressed the differences in microsporogenesis between male sterile and fertile lines of Chinese pink. The microsporogenesis processes of male sterile and fertile lines were histologically examined in squas...This study addressed the differences in microsporogenesis between male sterile and fertile lines of Chinese pink. The microsporogenesis processes of male sterile and fertile lines were histologically examined in squashed pollen grains and in paraffin embedded sections. A stable male-sterile line (H-37B) was obtained following six generations of inbreeding in a self-fertile line, followed by two generations of backcrossing. In the corresponding fertile line, development of the mature pollen grains was followed through the initiation of the sporogenous cell, microsporocyte formation, and the tetrad developmental period. In the male-sterile line, abortion of the developing pollen grains was observed to take place at various stages, namely, sporogenous cell growth, mother cell meiosis, and tetrad transformation to the uninuclear state. The pollen grains of the fertile line were spheroid, turgid, and viable. By contrast, the male-sterile line produced pollen that was irregular in shape, empty, and nonviable. The abortion of the microspore in the male-sterile line appeared to relate to abnormal growth of the tapetum layer.展开更多
An efficient procedure was developed for in vitro callus induction, proliferation and regeneration of carnation cultivar (Dianthus caryophyllus L.) using leaf, nodal and inter-nodal explants on Murashige and Skoog’s ...An efficient procedure was developed for in vitro callus induction, proliferation and regeneration of carnation cultivar (Dianthus caryophyllus L.) using leaf, nodal and inter-nodal explants on Murashige and Skoog’s medium (MS) supplemented with exogenous plant growth regulators. For morphogenic callus induction and proliferation from various explants, MS medium supplemented with 3.0 mg/l 2,4-D was highly efficient with 100% callus induction frequency from inter-nodal explants. Leaf explants showed quicker response than nodal and inter-modal explants, for callus initiation within 6 days of inoculation. Best grown callus was obtained from leaf explant. The leaf-derived callus was maintained up to several weeks, which indicated that 8-week incubation period was the most suitable for obtaining well proliferated, morphogenic callus. Temperature variation also affected the growth of in vitro induced morphogenic callus from various explants. Results have shown that 27°C proved to be the best temperature for morphogenic callus induction and proliferation from leaf and inter-nodal explants. Among the auxin-cytokinin combination, MS medium containing 1.0 mg/l N(6)-benzylaminopurin (BAP) and 2.0 mg/l NAA showed the highest efficiency of callus initiation and proliferation from leaf, nodal and inter-nodal explants. Light conditions proved better for callogenesis and proliferation from leaf, nodal and inter-nodal explants. Regeneration response from well grown morphogenic callus was prominent on MS medium supplemented with 3.0 mg/l BAP alone and 1.0 mg/l NAA with 3.0 mg/l BAP.展开更多
A cDNA clone encoding a putative EBF-like protein (DCEBF1)was obtained from total RNA isolated from senescing carnation (Dianthus caryophyllus L.) petals using reverse transcription PCR and rapid-amplification of ...A cDNA clone encoding a putative EBF-like protein (DCEBF1)was obtained from total RNA isolated from senescing carnation (Dianthus caryophyllus L.) petals using reverse transcription PCR and rapid-amplification of cDNA ends techniques. The cDNA contained an open reading frame of l 878 bp corresponding to 625 amino acids. Results of Northern blot indicated DCEBFI expression was enhanced by endogenous and exogenous ethylene, and was inhibited by STS in petals and ovaries. Upon wounding treatment, DCEBF1 showed a quick increase in mRNA accumulation which was positively correlated with the increase in ethylene production. The levels of DCEBF1 mRNA increased in both petals and ovaries by sucrose treatment compared with the control.展开更多
基金supported by funding from National Natural Science Foundation of China(Grant Nos.32002074 and 31872135)China Postdoctoral Science Foundation(Grant No.2021M693445)。
文摘The double flower developmental process is regulated via a complex transcriptional regulatory network.To understand this highly dynamic and complex developmental process of Dianthus spp.,we performed a comparative analysis of floral morphology and transcriptome dynamics in simple flowers and double flowers.We found that the primordium of double flowers of‘X’was larger in size compared to that of simple flowers of‘L’in Dianthus chinensis.RNA-seq and Weighted Gene Co-expression Network Analysis(WGCNA)during flower development,identified stage-specific gene network modules.Expression analysis by RNA-seq indicated that a group of genes related to floral meristem identity,primordia position and polarity were highly expressed in double flowers genotypes compared to simple flowers genotypes,suggesting their roles in double-petal formation.A total of 21 DEGs related to petal number were identified between simple and double flowers.The experiments of in situ hybridization revealed that DcaAP2L,DcaLFY and DcaUFO genes were expressed in the intra-sepal boundary and petal boundary.We proposed a potential transcriptional regulatory network for simple and double flower development.This study provides novel insights into the molecular mechanism underlying double flower formation in Dianthus spp.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31902052 and 31972450)the National Key Research and Development Program of China(Grant No.2016YFC0500300)+1 种基金the Natural Science Foundation of Heilongjiang Province of China(Grant No.C2018021)the‘Academic backbone’Project of Northeast Agricultural University of China(Grant No.18XG08).
文摘Dianthus spiculifolius is a perennial herbaceous flower with strong environmental adaptability and is an important ornamental ground cover plant.In this study,seeds of D.spiculifolius were used as explants for callus induction,adventitious bud differentiation,and rooting by adding different concentrations of 2,4-dichlorophenoxyacetic acid(2,4-D),6-benzyl aminopurine(6-BA),and naphthaleneacetic acid(NAA)to Murashige and Skoog medium.The calli generated were co-cultured with Agrobacterium tumefaciens EHA105 containing pBI121-GUS or pBI121-GFP plasmids for 30 min,and transgenic regenerated plants were obtained by kanamycin(30mg·L^−1)screening.RT-PCR confirmed the stable expression of the exogenous GUS and GFP genes in the D.spiculifolius.Theβ-glucuronidase(GUS)histochemical staining confirmed GUS gene expression in transgenic calli,adventitious buds,and regenerated plants of D.spiculifolius.The green fluorescent protein(GFP)visual analysis showed GFP gene expression in transgenic calli.Furthermore,subcellular localization analysis showed that the three organelle marker proteins were not only successfully expressed but also accurately localized to their corresponding organelles in D.spiculifolius callus cells.These results indicated a successful establishment of a reliable and efficient A.tumefaciens-mediated genetic transformation system,which will contribute to functional gene research and genetic improvement of D.spiculifolius.
基金supported by the Natural Science Foundation of Ynunan Province(No.2007B021M)Yurman University(No.2003Q008A).
文摘A new cyclopeptide as well as a known cyclopeptide were isolated from the whole plants of Dianthus caryophyllus. Their structures were elucidated as cyclo (-Thr-Gly-Pro-Tyr-Phe-) (1) and cyclo (-Ala-Gly-Ser-IIe-Phe-Phe-) (2) by means of chemical and spectroscopic methods including MS, 1D and 2D NMR techniques.
文摘This study addressed the differences in microsporogenesis between male sterile and fertile lines of Chinese pink. The microsporogenesis processes of male sterile and fertile lines were histologically examined in squashed pollen grains and in paraffin embedded sections. A stable male-sterile line (H-37B) was obtained following six generations of inbreeding in a self-fertile line, followed by two generations of backcrossing. In the corresponding fertile line, development of the mature pollen grains was followed through the initiation of the sporogenous cell, microsporocyte formation, and the tetrad developmental period. In the male-sterile line, abortion of the developing pollen grains was observed to take place at various stages, namely, sporogenous cell growth, mother cell meiosis, and tetrad transformation to the uninuclear state. The pollen grains of the fertile line were spheroid, turgid, and viable. By contrast, the male-sterile line produced pollen that was irregular in shape, empty, and nonviable. The abortion of the microspore in the male-sterile line appeared to relate to abnormal growth of the tapetum layer.
文摘An efficient procedure was developed for in vitro callus induction, proliferation and regeneration of carnation cultivar (Dianthus caryophyllus L.) using leaf, nodal and inter-nodal explants on Murashige and Skoog’s medium (MS) supplemented with exogenous plant growth regulators. For morphogenic callus induction and proliferation from various explants, MS medium supplemented with 3.0 mg/l 2,4-D was highly efficient with 100% callus induction frequency from inter-nodal explants. Leaf explants showed quicker response than nodal and inter-modal explants, for callus initiation within 6 days of inoculation. Best grown callus was obtained from leaf explant. The leaf-derived callus was maintained up to several weeks, which indicated that 8-week incubation period was the most suitable for obtaining well proliferated, morphogenic callus. Temperature variation also affected the growth of in vitro induced morphogenic callus from various explants. Results have shown that 27°C proved to be the best temperature for morphogenic callus induction and proliferation from leaf and inter-nodal explants. Among the auxin-cytokinin combination, MS medium containing 1.0 mg/l N(6)-benzylaminopurin (BAP) and 2.0 mg/l NAA showed the highest efficiency of callus initiation and proliferation from leaf, nodal and inter-nodal explants. Light conditions proved better for callogenesis and proliferation from leaf, nodal and inter-nodal explants. Regeneration response from well grown morphogenic callus was prominent on MS medium supplemented with 3.0 mg/l BAP alone and 1.0 mg/l NAA with 3.0 mg/l BAP.
基金supported by the National Natural Science Foundation of China (30800758 and 30972410)SRF for ROCS,SEM,Fok Ying Tung Education Foundation (104031),Chinathe Plant Biology National Experimental Teaching Demonstration Center of South China Agricultural University,China
文摘A cDNA clone encoding a putative EBF-like protein (DCEBF1)was obtained from total RNA isolated from senescing carnation (Dianthus caryophyllus L.) petals using reverse transcription PCR and rapid-amplification of cDNA ends techniques. The cDNA contained an open reading frame of l 878 bp corresponding to 625 amino acids. Results of Northern blot indicated DCEBFI expression was enhanced by endogenous and exogenous ethylene, and was inhibited by STS in petals and ovaries. Upon wounding treatment, DCEBF1 showed a quick increase in mRNA accumulation which was positively correlated with the increase in ethylene production. The levels of DCEBF1 mRNA increased in both petals and ovaries by sucrose treatment compared with the control.