The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion ...The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion spring and characteristic curves of diaphragm spring were theoretically and experimentally studied. Then, model of transfer characteristics of the normal force was built, with special conscen on the abrasion of friction discs and the influence of temperature to diaphragm spring. Finally, the model was tested in practical starting for cars equipped with AMT, which showed that the starting quality was significantly improved. The experimental results showed that the proposed model was precise enough to be implemented conveniently.展开更多
A model was developed to simulate a vehicle diaphragm spring clutch with the evaluation indicators of jerk degree and friction work.First,the pressing load characteristic of the driven plate of the diaphragm spring cl...A model was developed to simulate a vehicle diaphragm spring clutch with the evaluation indicators of jerk degree and friction work.First,the pressing load characteristic of the driven plate of the diaphragm spring clutch was analyzed.Then,the clutch dynamic characteristic under each state was studied according to the basic principles of tribology.Finally,the mathematical model of the clutch was developed.Based on the model,the performance of a vehicle was simulated.The simulation results show that the model can predict the dynamic characteristic of the clutch correctly and evaluate the performance of the clutch engagement effectively.The model can be used for theoretical research of automatic clutch control and can be easily applied to simulate vehicle longitudinal dynamics.展开更多
To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to th...To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts.展开更多
A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet co...A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet coil. For special characteristic of dual diaphragm spring, the clutch does not consume energy in steady state after engaging or disengaging. To validate the feasibility of this design, author builds the mathematical model and imports it into MATLAB Simulink. The simulation shows the behavior of clutch in different control strategies.展开更多
基金Supported by the National Natural Science Foundation of China(51275038)
文摘The diaphragm spring clutch static characteristics to improve the starting quality for cars equipped with automated mechanical transmission (AMT) were modeled and simulated. First, axial stiffness of clutch cushion spring and characteristic curves of diaphragm spring were theoretically and experimentally studied. Then, model of transfer characteristics of the normal force was built, with special conscen on the abrasion of friction discs and the influence of temperature to diaphragm spring. Finally, the model was tested in practical starting for cars equipped with AMT, which showed that the starting quality was significantly improved. The experimental results showed that the proposed model was precise enough to be implemented conveniently.
基金Supported by the National Natural Science Foundation of China(51375053)
文摘A model was developed to simulate a vehicle diaphragm spring clutch with the evaluation indicators of jerk degree and friction work.First,the pressing load characteristic of the driven plate of the diaphragm spring clutch was analyzed.Then,the clutch dynamic characteristic under each state was studied according to the basic principles of tribology.Finally,the mathematical model of the clutch was developed.Based on the model,the performance of a vehicle was simulated.The simulation results show that the model can predict the dynamic characteristic of the clutch correctly and evaluate the performance of the clutch engagement effectively.The model can be used for theoretical research of automatic clutch control and can be easily applied to simulate vehicle longitudinal dynamics.
文摘To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts.
文摘A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet coil. For special characteristic of dual diaphragm spring, the clutch does not consume energy in steady state after engaging or disengaging. To validate the feasibility of this design, author builds the mathematical model and imports it into MATLAB Simulink. The simulation shows the behavior of clutch in different control strategies.