The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation ...The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper.展开更多
The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea (SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measur...The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea (SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach -10-4 m^2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography, in contrast, the influence of the wind-induced near- inertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.展开更多
Diapycnal mixing (DM) in the upper 600 m of the Pacific Ocean was estimated based on the huge amount of the observations from Global Temperature-Salinity Profile Programme (GTSPP), using the strain version of the ...Diapycnal mixing (DM) in the upper 600 m of the Pacific Ocean was estimated based on the huge amount of the observations from Global Temperature-Salinity Profile Programme (GTSPP), using the strain version of the finescale parameterization. It is found that DM in each season exhibits similar distribution pattern, but differs in details. The intensification of DM is related to bottom roughness, surface near-inertial energy, and proximity to the equator. The intensified DM caused by rough topography shows in the profiles near the Mendocino fracture zone in the northeast Pacific, and the heightened DM caused by wind-generated near-inertial energy appears in the westerly region of the Southern Ocean. As compared to previous estimates, the DM estimate in this work has better spatial coverage and finer resolution, and more importantly it contains the seasonal variability, Furthermore, the resulting DM dataset is gridded, rendering it suitable for modeling applications.展开更多
The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45...The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45°S). Three model experiments are performed: one with a diapycnal mixing coefficientK d (m2 s?1) of 2 × 10?7/N (Expt. 1), one withK d = 0 (Expt. 2), and one withK d = 5 × 10?8/N (Expt. 3),N (s?1) is the Brunt-V?is?l? frequency. The model simulations indicate that the observed vertical distribution of CFC-11 along 88°W (prime meridian at 0°E) in the Southern Ocean is caused by local ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing from deeply ventilated waters in the Weddell Sea region. It is found that at the end of 1997, the simulated net ocean uptake of CFC-11 in Expt. 2 is 25% below that of Expt. 1. The decreased uptake of CFC-11 in the Southern Ocean accounts for 80% of this difference. Furthermore, Expts. 2 and 3 yield far more realistic vertical distributions of the ventilated CFC-waters than Expt. 1. The experiments clearly highlight the sensitivity of the Southern Ocean surface water ventilation to the distribution and thickness of the simulated mixed layer. It is argued that inclusion of CFCs in coupled climate models could be used as a test-bed for evaluating the decadal-scale ocean uptake of heat and CO2.展开更多
文摘The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper.
基金The National Basic Research Program(973 Program) of China under contract No.2013CB956201the National Natural Science Foundation of China under contract Nos 41521091,U1406401 and 41622602the Global Change Project under contract No.GASI-03-01-01-05
文摘The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea (SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach -10-4 m^2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography, in contrast, the influence of the wind-induced near- inertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.
基金The National Natural Science Foundation of China under contract No.41206012the National Basic Research Program(973Program)of China under contract No.2012CB316206the Program for Public from State Oceanic Administration of China under contract No.201105017
文摘Diapycnal mixing (DM) in the upper 600 m of the Pacific Ocean was estimated based on the huge amount of the observations from Global Temperature-Salinity Profile Programme (GTSPP), using the strain version of the finescale parameterization. It is found that DM in each season exhibits similar distribution pattern, but differs in details. The intensification of DM is related to bottom roughness, surface near-inertial energy, and proximity to the equator. The intensified DM caused by rough topography shows in the profiles near the Mendocino fracture zone in the northeast Pacific, and the heightened DM caused by wind-generated near-inertial energy appears in the westerly region of the Southern Ocean. As compared to previous estimates, the DM estimate in this work has better spatial coverage and finer resolution, and more importantly it contains the seasonal variability, Furthermore, the resulting DM dataset is gridded, rendering it suitable for modeling applications.
文摘The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45°S). Three model experiments are performed: one with a diapycnal mixing coefficientK d (m2 s?1) of 2 × 10?7/N (Expt. 1), one withK d = 0 (Expt. 2), and one withK d = 5 × 10?8/N (Expt. 3),N (s?1) is the Brunt-V?is?l? frequency. The model simulations indicate that the observed vertical distribution of CFC-11 along 88°W (prime meridian at 0°E) in the Southern Ocean is caused by local ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing from deeply ventilated waters in the Weddell Sea region. It is found that at the end of 1997, the simulated net ocean uptake of CFC-11 in Expt. 2 is 25% below that of Expt. 1. The decreased uptake of CFC-11 in the Southern Ocean accounts for 80% of this difference. Furthermore, Expts. 2 and 3 yield far more realistic vertical distributions of the ventilated CFC-waters than Expt. 1. The experiments clearly highlight the sensitivity of the Southern Ocean surface water ventilation to the distribution and thickness of the simulated mixed layer. It is argued that inclusion of CFCs in coupled climate models could be used as a test-bed for evaluating the decadal-scale ocean uptake of heat and CO2.