多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实...多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实世界数据质量问题的存在(如拼写错误、顺序颠倒等),多方PPRL方法的可扩展性和容错性面临挑战.目前,已有的大部分多方PPRL方法都是精确匹配方法,不具有容错性.还有少部分多方PPRL近似方法具有容错性,但在处理存在质量问题的数据时,由于容错性差和时间代价过大,并不能有效地找出数据源间的共同实体.因此,提出一种结合布隆过滤、安全合计、动态阈值、检查机制和改进的Dice相似度函数的多方PPRL近似方法.首先,利用布隆过滤将各数据源中的每条记录信息转换成由0和1组成的位数组.然后,计算每个对应位置bit 1所占的比率,并利用动态阈值和检查机制来判定匹配成功的位置.最后,通过改进的Dice相似度函数计算出记录间的相似度,进而判断记录间是否匹配成功.实验结果表明:所提出的方法具有较好的可扩展性,并且在保证查准率的同时,比已有的多方近似PPRL方法具有更高的容错性.展开更多
文摘多方隐私保护下的记录链接(privacy-preserving record linkage,简称PPRL)是在隐私保护下,从多个数据源中找出代表现实世界中同一实体的过程.该过程除了最终匹配结果被数据源之间共享外,其他信息均未被泄露.随着数据量的日益增大和现实世界数据质量问题的存在(如拼写错误、顺序颠倒等),多方PPRL方法的可扩展性和容错性面临挑战.目前,已有的大部分多方PPRL方法都是精确匹配方法,不具有容错性.还有少部分多方PPRL近似方法具有容错性,但在处理存在质量问题的数据时,由于容错性差和时间代价过大,并不能有效地找出数据源间的共同实体.因此,提出一种结合布隆过滤、安全合计、动态阈值、检查机制和改进的Dice相似度函数的多方PPRL近似方法.首先,利用布隆过滤将各数据源中的每条记录信息转换成由0和1组成的位数组.然后,计算每个对应位置bit 1所占的比率,并利用动态阈值和检查机制来判定匹配成功的位置.最后,通过改进的Dice相似度函数计算出记录间的相似度,进而判断记录间是否匹配成功.实验结果表明:所提出的方法具有较好的可扩展性,并且在保证查准率的同时,比已有的多方近似PPRL方法具有更高的容错性.