An Abbe refractometer with a rotatable polarizer mounted on the eyepiece is used for determining the two principal refractive indices of methyl-cyanoethyl cellulose/dichloroacetic acid liquid crystalline solutions. Th...An Abbe refractometer with a rotatable polarizer mounted on the eyepiece is used for determining the two principal refractive indices of methyl-cyanoethyl cellulose/dichloroacetic acid liquid crystalline solutions. The critical concentration where the mesophase appears can be determined according to the variation of the increment of the refractive index with the concentration. Mesophase textures of the liquid crystalline solutions are observed and the influence of the concentration on mesophase textures is also discussed.展开更多
Cancer cells utilize cytosolic glycolysis for their energy production even in the presence of adequate levels of oxygen (Warbug effect) due to mitochondrial defects. Dichloroacetic acid (DCA) shifts cytosolic glucose ...Cancer cells utilize cytosolic glycolysis for their energy production even in the presence of adequate levels of oxygen (Warbug effect) due to mitochondrial defects. Dichloroacetic acid (DCA) shifts cytosolic glucose metabolism to aerobic oxidation by inhibiting mitochondrial pyruvate dehydrogenase kinase (PDK) and increasing pyruvate uptake. Therefore, DCA has potential in reversing the glycolytic metabolism defect in cancerous cells. DCA is also known to induce apoptosis in a number of cancer cell lines, the mechanism of which is not well understood. In this study, an attempt has been made to investigate the effects of DCA on aggressive human breast cancer (MCF-7) cells as compared with less aggressive mouse osteoblastic (MC3T3) cells. Cell cytotoxicity was determined by MTT, crystal violet and Trypan blue exclusion assays. Western blot was used to detect any changes in the expression of apoptotic markers. Flow cytometry was used to measure apoptotic and necrotic effects of DCA. Mitochondrial integrity was determined by change in mitochondrial membrane potential (Δψm), whereas oxidative damage was determined by production of reactive oxygen species (ROS). DCA caused a concentration-dependent cytotoxicity both in MCF-7 and MC3T3 cell lines. MCF-7 cells were most affected. Flow cytometry results showed a significantly higher apoptosis in MCF-7 even at lower concentrations of DCA. However, higher concentrations of DCA were necrotic. Western blotting showed an increased expression of Mn-SOD-1 upon DCA treatment. Further, DCA decreased Δψm and increased ROS production. The effects of DCA were more pronounced on MCF-7 cells as compared to MC3T3 cells. Our results suggest that DCA-induced cytotoxicity in cancerous cells is mediated via changes in Δψm and production of ROS.展开更多
Without using sodium sulfite or oxides,The content of residual dichloroacetic acid in lauramidopropyl betaine was reduced by technology improvement.The effects of reaction temperature,pressure,reaction time,pH and col...Without using sodium sulfite or oxides,The content of residual dichloroacetic acid in lauramidopropyl betaine was reduced by technology improvement.The effects of reaction temperature,pressure,reaction time,pH and color on the residual dichloroacetic acid were studied.The optimum conditions were screened out,i.e.processing time of 3 h,processing temperature of 120℃,pressure of 0.11 MPa and pH of 12.0.Hereby the dichloroacetic acid residues could be reduced from 450 mg/kg to less than 50 mg/kg,and the color of the product was below 70 hazen.展开更多
Background:Identifying regulatory measures to promote glucose oxidative metabolism while simultaneously reducing amino acid oxidative metabolism is one of the foremost challenges in formulating low-protein(LP)diets de...Background:Identifying regulatory measures to promote glucose oxidative metabolism while simultaneously reducing amino acid oxidative metabolism is one of the foremost challenges in formulating low-protein(LP)diets designed to reduce the excretion of nitrogen-containing substances known to be potential pollutants.In this study,we investigated the effects of adding sodium dichloroacetate(DCA)to a LP diet on nitrogen balance and amino acid metabolism in the portal-drained viscera(PDV)and liver of pigs.To measure nitrogen balance,18 barrows(40±1.0 kg)were fed one of three diets(n=6 per group):18%crude protein(CP,control),13.5%CP(LP),and 13.5%CP+100 mg DCA/kg dry matter(LP-DCA).To measure amino acid metabolism in the PDV and liver,15 barrows(40±1.0 kg)were randomly assigned to one of the three diets(n=5 per group).Four essential amino acids(Lys,Met,Thr,and Trp)were added to the LP diets such that these had amino acid levels comparable to those of the control diet.Results:The LP-DCA diet reduced nitrogen excretion in pigs relative to that of pigs fed the control diet(P<0.05),without any negative effects on nitrogen retention(P>0.05).There were no differences between the control and LP-DCA groups with respect to amino acid supply to the liver and extra-hepatic tissues in pigs(P>0.05).The net release of ammonia into the portal vein and production rate of urea in the liver of pigs fed the LP-DCA diet was reduced relative to that of pigs fed the control and LP diets(P<0.05).Conclusion:The results indicated that addition of DCA to a LP diet can efficiently reduce nitrogen excretion in pigs and maximize the supply of amino acids to the liver and extra-hepatic tissues.展开更多
Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carded out to investigate the e...Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carded out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was adopted to explore the mechanism of generating hydroxyl radical ('OH) on the ZnO surface. The results showed that adsorption and ozonation processes were not effective for DCAA removal, and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation, which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min. Under the same experimental conditions, the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L. The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93, 6.88, and 10. With increasing the concentration of t-BuOH from 10 to 200 rag/L, the degradation of DCAA was significantly inhibited in the process of catalytic ozonation, indicating that ZnO catalytic ozonation followed "OH reaction mechanism. Based on the experimental results and DFT analysis, it is deduced that the generation of "OH on the ZnO surface is ascribed to the adsorption of molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface. It is also concluded that ZnO may be an effective catalyst for DCAA removal, which could promote the formation of .OH derived from the catalytic decomposition of ozone.展开更多
An anion-exchange chromatography method combined solid phase extraction (SPE) was developed for the simultaneous analysis of glycolate acid (GL), monochloroacetic acid (MCA) and dichloroacetic acid (DCA) in sy...An anion-exchange chromatography method combined solid phase extraction (SPE) was developed for the simultaneous analysis of glycolate acid (GL), monochloroacetic acid (MCA) and dichloroacetic acid (DCA) in synthetical betaine products. The analytes and unknown anionic impurities were well separated on a Metrosep A supp5 anion-exchange column (150 mm×4 mm) with 2.0 mmol/L Na2CO3+2.0 mmol/L NaHCO3 solution as eluent. Suppressed conductivity detection was used. A strong cation exchange (SCX) solid phase extraction (SPE) cartridge was used to reduce the concentration of matrix betaine and a Cleanert IC-Ag pretreatment cartridge was used to remove high Cl- concentration. The detection limits of GL, MCA and DCA were 0.09, 0.017 and 0.05 μg/L, respectively. The relative standard deviations (RSDs) of the retention times and peak areas were less than 0.09% and 0.49%, respectively. The recoveries of the three analytes were between 90.6% and 100.8%. The analytical results showed that GL and DCA were present in high concentration and no MCA was found when the proposed ion chromatography method was applied to three synthetical betaine samples. The proposed method is simple, sensitive and timesaving, and is also suitable for routine analysis in quality control of synthetical betaine products.展开更多
Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobili...Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.展开更多
Mammalian target of rapamycin(mTOR)controls cellular anabolism,and mTOR signaling is hyperactive in most cancer cells.As a result,inhibition of mTOR signaling benefits cancer patients.Rapamycin is a US Food and Drug A...Mammalian target of rapamycin(mTOR)controls cellular anabolism,and mTOR signaling is hyperactive in most cancer cells.As a result,inhibition of mTOR signaling benefits cancer patients.Rapamycin is a US Food and Drug Administration(FDA)-approved drug,a specific mTOR complex 1(mTORC1)inhibitor,for the treatment of several different types of cancer.However,rapamycin is reported to inhibit cancer growth rather than induce apoptosis.Pyruvate dehydrogenase complex(PDHc)is the gatekeeper for mitochondrial pyruvate oxidation.PDHc inactivation has been observed in a number of cancer cells,and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide(NAD^(+))exhaustion.In this paper,we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1(PDHA1)phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells.This inactivation reduces the sensitivity of cancer cells'response to rapamycin.As a result,rebooting PDHc activity with dichloroacetic acid(DCA),a pyruvate dehydrogenase kinase(PDK)inhibitor,promotes cancer cells'susceptibility to rapamycin treatment in vitro and in vivo.展开更多
基金Projects supported by Academia Sinica Selected Research Program and The National Natural Science Foundation of China.
文摘An Abbe refractometer with a rotatable polarizer mounted on the eyepiece is used for determining the two principal refractive indices of methyl-cyanoethyl cellulose/dichloroacetic acid liquid crystalline solutions. The critical concentration where the mesophase appears can be determined according to the variation of the increment of the refractive index with the concentration. Mesophase textures of the liquid crystalline solutions are observed and the influence of the concentration on mesophase textures is also discussed.
文摘Cancer cells utilize cytosolic glycolysis for their energy production even in the presence of adequate levels of oxygen (Warbug effect) due to mitochondrial defects. Dichloroacetic acid (DCA) shifts cytosolic glucose metabolism to aerobic oxidation by inhibiting mitochondrial pyruvate dehydrogenase kinase (PDK) and increasing pyruvate uptake. Therefore, DCA has potential in reversing the glycolytic metabolism defect in cancerous cells. DCA is also known to induce apoptosis in a number of cancer cell lines, the mechanism of which is not well understood. In this study, an attempt has been made to investigate the effects of DCA on aggressive human breast cancer (MCF-7) cells as compared with less aggressive mouse osteoblastic (MC3T3) cells. Cell cytotoxicity was determined by MTT, crystal violet and Trypan blue exclusion assays. Western blot was used to detect any changes in the expression of apoptotic markers. Flow cytometry was used to measure apoptotic and necrotic effects of DCA. Mitochondrial integrity was determined by change in mitochondrial membrane potential (Δψm), whereas oxidative damage was determined by production of reactive oxygen species (ROS). DCA caused a concentration-dependent cytotoxicity both in MCF-7 and MC3T3 cell lines. MCF-7 cells were most affected. Flow cytometry results showed a significantly higher apoptosis in MCF-7 even at lower concentrations of DCA. However, higher concentrations of DCA were necrotic. Western blotting showed an increased expression of Mn-SOD-1 upon DCA treatment. Further, DCA decreased Δψm and increased ROS production. The effects of DCA were more pronounced on MCF-7 cells as compared to MC3T3 cells. Our results suggest that DCA-induced cytotoxicity in cancerous cells is mediated via changes in Δψm and production of ROS.
文摘Without using sodium sulfite or oxides,The content of residual dichloroacetic acid in lauramidopropyl betaine was reduced by technology improvement.The effects of reaction temperature,pressure,reaction time,pH and color on the residual dichloroacetic acid were studied.The optimum conditions were screened out,i.e.processing time of 3 h,processing temperature of 120℃,pressure of 0.11 MPa and pH of 12.0.Hereby the dichloroacetic acid residues could be reduced from 450 mg/kg to less than 50 mg/kg,and the color of the product was below 70 hazen.
基金This study was funded by grants from the National Natural Science Foundation of China(31872370,31670123)the Fundamental Research Funds for the Central Universities(XDJK2019B014,XDJK2013C097)the Natural Science Foundation Project of CQ CSTC(cstc2018jcyjAX0025).
文摘Background:Identifying regulatory measures to promote glucose oxidative metabolism while simultaneously reducing amino acid oxidative metabolism is one of the foremost challenges in formulating low-protein(LP)diets designed to reduce the excretion of nitrogen-containing substances known to be potential pollutants.In this study,we investigated the effects of adding sodium dichloroacetate(DCA)to a LP diet on nitrogen balance and amino acid metabolism in the portal-drained viscera(PDV)and liver of pigs.To measure nitrogen balance,18 barrows(40±1.0 kg)were fed one of three diets(n=6 per group):18%crude protein(CP,control),13.5%CP(LP),and 13.5%CP+100 mg DCA/kg dry matter(LP-DCA).To measure amino acid metabolism in the PDV and liver,15 barrows(40±1.0 kg)were randomly assigned to one of the three diets(n=5 per group).Four essential amino acids(Lys,Met,Thr,and Trp)were added to the LP diets such that these had amino acid levels comparable to those of the control diet.Results:The LP-DCA diet reduced nitrogen excretion in pigs relative to that of pigs fed the control diet(P<0.05),without any negative effects on nitrogen retention(P>0.05).There were no differences between the control and LP-DCA groups with respect to amino acid supply to the liver and extra-hepatic tissues in pigs(P>0.05).The net release of ammonia into the portal vein and production rate of urea in the liver of pigs fed the LP-DCA diet was reduced relative to that of pigs fed the control and LP diets(P<0.05).Conclusion:The results indicated that addition of DCA to a LP diet can efficiently reduce nitrogen excretion in pigs and maximize the supply of amino acids to the liver and extra-hepatic tissues.
基金support by the National Natural Science Foundation of China(No.50638020)the High Technology Research and Development Program(863)of China (No.2007AA06Z339)+1 种基金the National Important Science and Technology Specific Project for the Control and Treatment of Water Pollution(No.2009ZX07424-004)the National Key Technology R&D Program during the 11th Five-Year Plan Period(No.2006BAJ08B02)
文摘Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carded out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was adopted to explore the mechanism of generating hydroxyl radical ('OH) on the ZnO surface. The results showed that adsorption and ozonation processes were not effective for DCAA removal, and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation, which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min. Under the same experimental conditions, the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L. The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93, 6.88, and 10. With increasing the concentration of t-BuOH from 10 to 200 rag/L, the degradation of DCAA was significantly inhibited in the process of catalytic ozonation, indicating that ZnO catalytic ozonation followed "OH reaction mechanism. Based on the experimental results and DFT analysis, it is deduced that the generation of "OH on the ZnO surface is ascribed to the adsorption of molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface. It is also concluded that ZnO may be an effective catalyst for DCAA removal, which could promote the formation of .OH derived from the catalytic decomposition of ozone.
文摘An anion-exchange chromatography method combined solid phase extraction (SPE) was developed for the simultaneous analysis of glycolate acid (GL), monochloroacetic acid (MCA) and dichloroacetic acid (DCA) in synthetical betaine products. The analytes and unknown anionic impurities were well separated on a Metrosep A supp5 anion-exchange column (150 mm×4 mm) with 2.0 mmol/L Na2CO3+2.0 mmol/L NaHCO3 solution as eluent. Suppressed conductivity detection was used. A strong cation exchange (SCX) solid phase extraction (SPE) cartridge was used to reduce the concentration of matrix betaine and a Cleanert IC-Ag pretreatment cartridge was used to remove high Cl- concentration. The detection limits of GL, MCA and DCA were 0.09, 0.017 and 0.05 μg/L, respectively. The relative standard deviations (RSDs) of the retention times and peak areas were less than 0.09% and 0.49%, respectively. The recoveries of the three analytes were between 90.6% and 100.8%. The analytical results showed that GL and DCA were present in high concentration and no MCA was found when the proposed ion chromatography method was applied to three synthetical betaine samples. The proposed method is simple, sensitive and timesaving, and is also suitable for routine analysis in quality control of synthetical betaine products.
基金supported by the Nature Science Foundation of Heilongjiang Province (No. B201410)the Postdoctoral Foundation Project of Heilongjiang Province (No. LBH-Z13128)+3 种基金the Science and Technology Research Program of Education Bureau of Heilongjiang Province (No. 12531206)the Special Scientific Research Projects of Harbin Normal University (12XQXG02)the National Nature Science Foundation of China (No. 41030743)the National Nature Science Foundation of China (No. 42171217)
文摘Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride)(PVDF) membrane was prepared with alumina(Al2O3) nanoparticle addition. Pd/Fe nanoparticles(NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid(DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed.
基金supported by the National Key Research and Development Program of China(No.2022YFA0806503)the National Natural Science Foundation of China(No.81972625)+1 种基金the Dalian Science and Technology Innovation Funding(No.2019J12SN52)the Liaoning Revitalization Talents Program(No.XLYC2002035),China。
文摘Mammalian target of rapamycin(mTOR)controls cellular anabolism,and mTOR signaling is hyperactive in most cancer cells.As a result,inhibition of mTOR signaling benefits cancer patients.Rapamycin is a US Food and Drug Administration(FDA)-approved drug,a specific mTOR complex 1(mTORC1)inhibitor,for the treatment of several different types of cancer.However,rapamycin is reported to inhibit cancer growth rather than induce apoptosis.Pyruvate dehydrogenase complex(PDHc)is the gatekeeper for mitochondrial pyruvate oxidation.PDHc inactivation has been observed in a number of cancer cells,and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide(NAD^(+))exhaustion.In this paper,we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1(PDHA1)phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells.This inactivation reduces the sensitivity of cancer cells'response to rapamycin.As a result,rebooting PDHc activity with dichloroacetic acid(DCA),a pyruvate dehydrogenase kinase(PDK)inhibitor,promotes cancer cells'susceptibility to rapamycin treatment in vitro and in vivo.