An innovative method for high-speed micro-dicing of SiC has been proposed using two types of diamond dicing blades,a resin-bonded dicing blade and a metal-bonded dicing blade.The experimental research investigated the...An innovative method for high-speed micro-dicing of SiC has been proposed using two types of diamond dicing blades,a resin-bonded dicing blade and a metal-bonded dicing blade.The experimental research investigated the radial wear of the dicing blade,the maximum spindle current,the surface morphology of the SiC die,the number of chips longer than 10μm,and the chipped area,which depend on the dicing process parameters such as spindle speed,feed speed,and cutting depth.The chipping fractures in the SiC had obvious brittle fracture characteristics.The performance of the metal-bonded dicing blade was inferior to that of the resin-bonded dicing blade.The cutting depth has the greatest influence on the radial wear of the dicing blade,the maximum spindle current,and the damage to the SiC wafer.The next most important parameter is the feed speed.The parameter with the least influence is the spindle speed.The main factor affecting the dicing quality is blade vibration caused by spindle vibration.The optimal SiC dicing was for a resin-bonded dicing blade with a spindle speed of 20000 rpm,a feed speed of 4 mm/s,and a cutting depth of 0.1 mm.To improve dicing quality and tool performance,spindle vibrations should be reduced.This approach may enable high-speed dicing of SiC wafers with less dicing damage.展开更多
In the recent years, the light sensitive resin has be en greatly improved. Its application includes rapid prototyping, bonding, protec tive coating and sealing. A new application to using light sensitive resin inste a...In the recent years, the light sensitive resin has be en greatly improved. Its application includes rapid prototyping, bonding, protec tive coating and sealing. A new application to using light sensitive resin inste ad of heat sensitive resin as bonding material in dicing blade is being progress ed by authors. This paper discusses the way in which the mechanical feature of t he new kinds of dicing blades had been greatly improved via adding whisker into light sensitive resin. Considering the enhancing function of whisker in length d irection is greater than that in diameter direction, an electric field was appli ed to make the direction of whisker in resin along with the direction of the load of dicing blade. In the electric field, a whisker in the resin is swerved to the direction of the electric force before the resin is solidified by ultravi olet radiation. The result shows that controlling the direction of whisker in th e resin by applying an electric field can finally greatly improve the mechanical property of dicing blade that can be used in processing the semi-conduct.展开更多
We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 ×...We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 × 10^(15) ions=cm^(2) are implanted in the polished face of Li Nb O_(3) crystals. For planar waveguides, a loss of 0.5 d B/cm is obtained after annealing at 300°C for30 min. The ridge waveguide is fabricated by the diamond blade dicing method on optimized planar waveguides. The guiding properties are investigated by prism coupling and end-face coupling methods.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51305278)LiaoNing Revitalization Talents Program,China(Grant No.XLYC2007133)the Natural Science Foundation of Liaoning Province,China(Grant No.2020-MS-213).
文摘An innovative method for high-speed micro-dicing of SiC has been proposed using two types of diamond dicing blades,a resin-bonded dicing blade and a metal-bonded dicing blade.The experimental research investigated the radial wear of the dicing blade,the maximum spindle current,the surface morphology of the SiC die,the number of chips longer than 10μm,and the chipped area,which depend on the dicing process parameters such as spindle speed,feed speed,and cutting depth.The chipping fractures in the SiC had obvious brittle fracture characteristics.The performance of the metal-bonded dicing blade was inferior to that of the resin-bonded dicing blade.The cutting depth has the greatest influence on the radial wear of the dicing blade,the maximum spindle current,and the damage to the SiC wafer.The next most important parameter is the feed speed.The parameter with the least influence is the spindle speed.The main factor affecting the dicing quality is blade vibration caused by spindle vibration.The optimal SiC dicing was for a resin-bonded dicing blade with a spindle speed of 20000 rpm,a feed speed of 4 mm/s,and a cutting depth of 0.1 mm.To improve dicing quality and tool performance,spindle vibrations should be reduced.This approach may enable high-speed dicing of SiC wafers with less dicing damage.
文摘In the recent years, the light sensitive resin has be en greatly improved. Its application includes rapid prototyping, bonding, protec tive coating and sealing. A new application to using light sensitive resin inste ad of heat sensitive resin as bonding material in dicing blade is being progress ed by authors. This paper discusses the way in which the mechanical feature of t he new kinds of dicing blades had been greatly improved via adding whisker into light sensitive resin. Considering the enhancing function of whisker in length d irection is greater than that in diameter direction, an electric field was appli ed to make the direction of whisker in resin along with the direction of the load of dicing blade. In the electric field, a whisker in the resin is swerved to the direction of the electric force before the resin is solidified by ultravi olet radiation. The result shows that controlling the direction of whisker in th e resin by applying an electric field can finally greatly improve the mechanical property of dicing blade that can be used in processing the semi-conduct.
基金supported by the National Natural Science Foundation of China(Nos.11874243 and 11805142)the Natural Science Foundation of Shandong Province(No.ZR2017MA052)。
文摘We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 × 10^(15) ions=cm^(2) are implanted in the polished face of Li Nb O_(3) crystals. For planar waveguides, a loss of 0.5 d B/cm is obtained after annealing at 300°C for30 min. The ridge waveguide is fabricated by the diamond blade dicing method on optimized planar waveguides. The guiding properties are investigated by prism coupling and end-face coupling methods.