期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Enhancement of Arabic Stemming by Using Light Stemming and Dictionary-Based Stemming
1
作者 Yasir Alhanini Mohd Juzaiddin Ab Aziz 《Journal of Software Engineering and Applications》 2011年第9期522-526,共5页
Word stemming is one of the most important factors that affect the performance of many natural language processing applications such as part of speech tagging, syntactic parsing, machine translation system and informa... Word stemming is one of the most important factors that affect the performance of many natural language processing applications such as part of speech tagging, syntactic parsing, machine translation system and information retrieval systems. Computational stemming is an urgent problem for Arabic Natural Language Processing, because Arabic is a highly inflected language. The existing stemmers have ignored the handling of multi-word expressions and identification of Arabic names. We used the enhanced stemming for extracting the stem of Arabic words that is based on light stemming and dictionary-based stemming approach. The enhanced stemmer includes the handling of multiword expressions and the named entity recognition. We have used Arabic corpus that consists of ten documents in order to evaluate the enhanced stemmer. We reported the accuracy values for the enhanced stemmer, light stemmer, and dictionary-based stemmer in each document. The results obtain shows that the average of accuracy in enhanced stemmer on the corpus is 96.29%. The experimental results showed that the enhanced stemmer is better than the light stemmer and dictionary-based stemmer that achieved highest accuracy values. 展开更多
关键词 dictionary-based Stemmer ARABIC Morphological Analyzer Named Entity Recognition
下载PDF
Satellite and instrument entity recognition using a pre-trained language model with distant supervision
2
作者 Ming Lin Meng Jin +1 位作者 Yufu Liu Yuqi Bai 《International Journal of Digital Earth》 SCIE EI 2022年第1期1290-1304,共15页
Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite ... Earth observations,especially satellite data,have produced a wealth of methods and results in meeting global challenges,often presented in unstructured texts such as papers or reports.Accurate extraction of satellite and instrument entities from these unstructured texts can help to link and reuse Earth observation resources.The direct use of an existing dictionary to extract satellite and instrument entities suffers from the problem of poor matching,which leads to low recall.In this study,we present a named entity recognition model to automatically extract satellite and instrument entities from unstructured texts.Due to the lack of manually labeled data,we apply distant supervision to automatically generate labeled training data.Accordingly,we fine-tune the pre-trained language model with early stopping and a weighted cross-entropy loss function.We propose the dictionary-based self-training method to correct the incomplete annotations caused by the distant supervision method.Experiments demonstrate that our method achieves significant improvements in both precision and recall compared to dictionary matching or standard adaptation of pre-trained language models. 展开更多
关键词 Earth observation named entity recognition pre-trained language model distant supervision dictionary-based self-training
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部