This work aims to reveal the relationships between the microstructure, mechanical properties and flow behavior of die-casting AlMg5Si2Mn alloy. Results indicated that the microstructure of the die-cast AlMgsSi2Mn cons...This work aims to reveal the relationships between the microstructure, mechanical properties and flow behavior of die-casting AlMg5Si2Mn alloy. Results indicated that the microstructure of the die-cast AlMgsSi2Mn consists of α1-Al grains, fine-size α2-Al grains and (Al + Mg2Si) eutectic. The surface layer observed has the thickness in a range of 120-135 μm, while an ellipse-like surface layer edge is observed in the corner of the plateqike sample. Tensile strength and elongation (3) of the specimens are slightly decreased along the die-filling direction due to the backflow of melt. Pure (Al + Mg2Si) eutectic layer and ultra-fine-size α2-Al grains observed are around the overflow channels. Mass feeding is predominantly responsible for the superior mechanical properties of the round bars as compared to those of plate-like samples.展开更多
基金financially supported by Guangdong Provincial Department of Science and Technology,China (No.2012A090300016)
文摘This work aims to reveal the relationships between the microstructure, mechanical properties and flow behavior of die-casting AlMg5Si2Mn alloy. Results indicated that the microstructure of the die-cast AlMgsSi2Mn consists of α1-Al grains, fine-size α2-Al grains and (Al + Mg2Si) eutectic. The surface layer observed has the thickness in a range of 120-135 μm, while an ellipse-like surface layer edge is observed in the corner of the plateqike sample. Tensile strength and elongation (3) of the specimens are slightly decreased along the die-filling direction due to the backflow of melt. Pure (Al + Mg2Si) eutectic layer and ultra-fine-size α2-Al grains observed are around the overflow channels. Mass feeding is predominantly responsible for the superior mechanical properties of the round bars as compared to those of plate-like samples.