The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the...The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.展开更多
Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano si...Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano size films of head gimble assemble are obtained experimentally.The breakdown voltage and thickness parameters show a positive proportional relationship,but they are generally very low and have large discrete characteristics(~30%).The maximum and minimum breakdown voltages of the tested samples are 1.08 V and 0.46 V,which are far lower than the requirement of the current standard(25 V).In addition,the judgment criterion of product damage is given,and the relationship between discharge voltage polarity,initial resistance and breakdown voltage is studied.Finally,the theoretical analysis of the breakdown characteristic law has been given.展开更多
Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et...Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et al., we study the role of MPI and AI in laser-induced damage in two dielectric films, fused silica (FS) and barium aluminum borosilicate (BBS), irradiated by 780-nm laser pulse with the pulse width range of 0.01 - 5 ps. The effects of MPI and initial electron density on seed electron generation are numerically analyzed. For FS, laser-induced damage is dominated by AI for the entire pulse width regime due to the wider band-gap. While for BBS, MPI becomes the leading power in damage for the pulse width T less than about 0.03 ps. MPI may result in a sharp rise of threshold fluence Fth on r, and AI may lead to a mild increase or even a constant value of Fth on r. MPI serves the production of seed electrons for AI when the electron density for AI is approached or exceeded before the end of MPI. This also means that the effect of initial electron can be neglected when MPI dominates the seed electron generation. The threshold fluence Fth decreases with the increasing initial electron density when the latter exceeds a certain critical value.展开更多
Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric i...Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric intensity distribution in the multilayer thin films. When the defect density in the irradiated area is high, delami- nation is observed. Other than the 1064 nm laser damage, the plasma scalding of the 532 nm laser damage is not pits-centered for normal incidence, and the size of the plasma scalding has no relation to the defect density and position, but increases with the laser fluence. For multiple-pulse irradiations, some damage sites show deeper precursors than those from the single-shot irradiation due to the accumulation effects. The cumulative laser- induced damages behave as pits without the presence of plasma scalding, which is unaffected by the laser fluence and shot numbers. The damage morphologies and depth information both confirm the fatigue effect of a HfO2/SiO2 HR coating under 532 nm laser irradiation.展开更多
As ideal candidates for next-generation energy storage devices,nanocapacitors are predicted to exhibit very high capacitance according to classical theory.However,the actual capacitance of nanocapacitors is dramatical...As ideal candidates for next-generation energy storage devices,nanocapacitors are predicted to exhibit very high capacitance according to classical theory.However,the actual capacitance of nanocapacitors is dramatically lower than expected.This is attributed to the so-called‘dead-layer’effect associated with the flexoelectricity of dielectric films and the incomplete screening of metal electrodes.In this paper,a way to mitigate this negative effect is demonstrated by using graded dielectric films instead of homogeneous films.The enhancements due to grading dielectric films were obtained by using perturbation theory to solve the governing equations with boundary conditions in Mindlin’s model of parallel-plate capacitors.We have shown that by grading both the relative permittivity and the elastic constant,we can obtain enhancement of almost 27%in capacitance for the 2.7 nm SrTiO_(3) dielectric film.In addition,the impact of various dielectric film properties on the overall capacitance was investigated.展开更多
The experiment setup of a reflecting combination device, which has more advantages than a transmitting combination device, is designed in this study. To achieve angular spectrum selectivity, only one type of reflectiv...The experiment setup of a reflecting combination device, which has more advantages than a transmitting combination device, is designed in this study. To achieve angular spectrum selectivity, only one type of reflective component is needed,so difficulties of design and preparation are reduced. A dielectric multilayer film is applied to the reflective component, and the long wave-pass coating stacks of the structure are designed. To achieve high stopband transmittance and reduce electric field intensity at a wavelength of 1053 nm, an objective function is proposed for designing an optimized coating. The final optimized coating has good spectral characteristics and a high laser-induced damage threshold. A dielectric multilayer film with high reflectance plays an important role in preparing and applying a dielectric multilayer film reflecting cutoff filter-combination device.展开更多
Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃....Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃. The ellipsometry result shows a high refractive index above 2.5 with the minimum absorption coefficient in the visible region, which is necessary for high efficiency of transparent metasurfaces. Atomic force microscopy analysis is employed to measure the roughness of the as-deposited films. It is seen from micrographs that the deposited films are very smooth with the minimum roughness to prevent scattering and absorption losses for metasurface devices. The absence of grains and cracks can be seen by scanning electron microscope analysis, which is favorable for electron beam lithography. Fourier transform infrared spectroscopy reveals the transmission and reflection obtained from the film deposited on glass substrates. The as-deposited film shows high transmission above 60%, which is in good agreement with metasurfaces.展开更多
Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric ...Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.展开更多
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-...The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.展开更多
The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the te...The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.展开更多
Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the s...Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.展开更多
Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmi...Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.展开更多
We studied the dielectric properties of organosilicon-containing helical cyclopolymer PbMA which consists of PMMA main chains and tetramethyldisiloxane side rings. PbMA formed films with excellent uniformity through s...We studied the dielectric properties of organosilicon-containing helical cyclopolymer PbMA which consists of PMMA main chains and tetramethyldisiloxane side rings. PbMA formed films with excellent uniformity through spin-coating onto highly n-doped silicon (n-Si) wafers for constructing devices of dielectric measurements, on which the dielectric properties and I-V characteristics of PbMA were studied. PbMA has a much lower dielectric constant (lower than 2.6) in the frequency range of 10-105 Hz, and better thermal stability than PMMA does. I-V data showed that the metal/PbMA/n-Si devices have different conducting directions, depending on whether Au or Al deposited over PbMA layers.展开更多
The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles 4-/3 are analyzed theoretically, based on t...The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles 4-/3 are analyzed theoretically, based on the characteristic matrix method for extraordinary waves. Then, the transmittances of uniformity monolayer and bilayer STF in symmetrical style are calculated to show the effect of the bilayer structure on the optical properties of STF. The inhomogeneity of STF is involved in analyzing the differences in transmittance and phase retardation between monolayer and bilayer STF deposited in symmetric style. The results show that optical homogeneity of STF can be improved by depositing in symmetric style at the normal incidence, but it is not the same case as the oblique incidence.展开更多
The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various ...The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various deposition conditions have been observed by scanning electron microscope(SEM).The experimental results strongly indicate that the surface morphologies of the resulting films have closely related to the deposition conditions,i.e.,reaction pressure.For molybdenum substrates,under the lower reaction pressure the surface morphologies of the grains comprising the resulting films mainly display the small single crystal cubo-octahedron and double small crystal cubo-octahedron;under the higher reaction pressure,the surface morphologies mainly display the large cauliflower-like.These results show that there are various crystal habits for CVD diamond under various deposition conditions.展开更多
The prerequisite and mode of electromagnetic response of nano metal/dielectric films to electromagnetic wave field were suggested. With the carrier density and the reflectance, transmittance of the film, the plasma fr...The prerequisite and mode of electromagnetic response of nano metal/dielectric films to electromagnetic wave field were suggested. With the carrier density and the reflectance, transmittance of the film, the plasma frequency and the dependence of absorptance on the frequency of electromagnetic wave field were calculated respectively. The calculated results accorded with the experimental ones, which proved the plasma resonance is one mode of electromagnetic response.展开更多
We proposed a method to evaluate the material dispersion of the dielectric film in dielectriccoated silver hollow fiber.By taking into consideration the derived material dispersion,the wavelengths of the loss peaks an...We proposed a method to evaluate the material dispersion of the dielectric film in dielectriccoated silver hollow fiber.By taking into consideration the derived material dispersion,the wavelengths of the loss peaks and valleys in the loss spectra of the hollow fiber can be predicted more accurately.Then,we fabricated the dielectric-coated silver hollow fiber according to the parameters obtained by using the improved design method.The measured data showed good agreement with the calculated results.The loss for medical laser of Er:YAG and CO_(2)was less than 0.3 dB/m.The loss for green or red pilot beams was around 5 dB/m,which is sufficiently low for the purpose of pilot beam transmission.The derived material dispersion plays an important role in the design and fabrication of the hollow fiber for multiwavelength delivery.展开更多
The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si ...The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si O2/p-Si are also characterized. After N2-plasma treatment, the nitrogen atoms are incorporated into HfO2 film and may passivate the oxygen vacancy states. The surface roughness of HfO2 film can also be reduced. Those improvements of HfO2 film lead to a smaller hysteresis and lower leakage current density of the MOS capacitor. The N2-plasma is introduced into Au nanocrystal(NC) nonvolatile memory to treat the HfO2 blocking layer. For the N2-plasma treated device, it shows a better retention characteristic and is twice as large in the memory window than that for the no N2-plasma treated device. It can be concluded that the N2-plasma treatment method can be applied to future nonvolatile memory applications.展开更多
A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evoluti...A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L sulfadiazine can be all removed within 30 min. The optimum pH value was 9.10 and both strong acidic and alkaline solution conditions were not suitable for the degradation. The degradation of sulfadiazine can be enhanced by the addition of hydrogen radical scavengers, but be inhibited by adding hydroxyl radical scavengers. The water falling film dielectric barrier discharge was rather ineffective in mineralization, because of the intermediates were recalcitrant to be degraded. The existence of Fe2+ and CCI4 in the liquid phase can promote the degradation and mineralization of sulfadiazine. It was found that the degradation of SDZ was enhanced by CC14 was mainly because of the increase of'OH due to the reaction of CC14 with *H that reduce the chances of their recombination with "OH. Based on the 8 intermediate products identified by LC-MS, the proposed evolution of the degradation process was investigated.展开更多
The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,...The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,we developed a new basic equation for the heat source of a Gaussian laser beam.Based on the new basic equation,an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer-or nanometer-scale thickness.Ex-periments were performed to measure the thermal conductivity of dielectric thin films with submicrometer-or nanometer-scale thickness.The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained.The obtained thermal conductivity of silicon dioxide film is 1.23W/(m.K),and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10-8m2.K/W.The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07W/(m.K)and 3.69×10-8m2.K/W,respectively.The experimental results are consistent with reported data.展开更多
基金supported by the National Key Research and Development Program(Grant No.2016YFB0900900)National Natural Science Foundation of China(Grant No.51577064)
文摘The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current(HVDC) power lines.HVDC lines may cross the greenhouses due to the restricted transmission corridors.Under the condition of ion flow field,the dielectric films on the greenhouses will be charged,and the electric fields in the greenhouses may exceed the limit value.Field mills are widely used to measure the groundlevel direct current electric fields under the HVDC power lines.In this paper,the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields.The advantages of hiding the field mill probes in the ground are studied.The charge inversion algorithm is optimized in order to decrease the impact of measurement errors.Based on the experimental results,the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied.The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height.Compared with the total electric field strengths,the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
文摘Electrostatic discharge(ESD)event usually destroys the electrical properties of dielectric films,resulting in product failure.In this work,the breakdown characteristic of machine mode(MM)ESD on three different nano size films of head gimble assemble are obtained experimentally.The breakdown voltage and thickness parameters show a positive proportional relationship,but they are generally very low and have large discrete characteristics(~30%).The maximum and minimum breakdown voltages of the tested samples are 1.08 V and 0.46 V,which are far lower than the requirement of the current standard(25 V).In addition,the judgment criterion of product damage is given,and the relationship between discharge voltage polarity,initial resistance and breakdown voltage is studied.Finally,the theoretical analysis of the breakdown characteristic law has been given.
基金supported by the National Natural Science Foundation of China(No.10804090 and 60708004)the Wuhan University of Technology Foundation(No.xjj2007031)
文摘Both the nature of avalanche ionization (AI) and the role of multi-photon ionization (MPI) in the studies of laser-induced damage have remained controversial up to now. According to the model proposed by Stuart et al., we study the role of MPI and AI in laser-induced damage in two dielectric films, fused silica (FS) and barium aluminum borosilicate (BBS), irradiated by 780-nm laser pulse with the pulse width range of 0.01 - 5 ps. The effects of MPI and initial electron density on seed electron generation are numerically analyzed. For FS, laser-induced damage is dominated by AI for the entire pulse width regime due to the wider band-gap. While for BBS, MPI becomes the leading power in damage for the pulse width T less than about 0.03 ps. MPI may result in a sharp rise of threshold fluence Fth on r, and AI may lead to a mild increase or even a constant value of Fth on r. MPI serves the production of seed electrons for AI when the electron density for AI is approached or exceeded before the end of MPI. This also means that the effect of initial electron can be neglected when MPI dominates the seed electron generation. The threshold fluence Fth decreases with the increasing initial electron density when the latter exceeds a certain critical value.
基金supported by the National Natural Science Foundation of China under Grant Nos.11104293and 61308021
文摘Nanosecond single- and multiple-pulse laser damage studies on HfOffSiO2 high-reflection (HR) coatings are performed at 532 nm. For single-pulse irradiation, the damage is attributed to the defects and the electric intensity distribution in the multilayer thin films. When the defect density in the irradiated area is high, delami- nation is observed. Other than the 1064 nm laser damage, the plasma scalding of the 532 nm laser damage is not pits-centered for normal incidence, and the size of the plasma scalding has no relation to the defect density and position, but increases with the laser fluence. For multiple-pulse irradiations, some damage sites show deeper precursors than those from the single-shot irradiation due to the accumulation effects. The cumulative laser- induced damages behave as pits without the presence of plasma scalding, which is unaffected by the laser fluence and shot numbers. The damage morphologies and depth information both confirm the fatigue effect of a HfO2/SiO2 HR coating under 532 nm laser irradiation.
文摘As ideal candidates for next-generation energy storage devices,nanocapacitors are predicted to exhibit very high capacitance according to classical theory.However,the actual capacitance of nanocapacitors is dramatically lower than expected.This is attributed to the so-called‘dead-layer’effect associated with the flexoelectricity of dielectric films and the incomplete screening of metal electrodes.In this paper,a way to mitigate this negative effect is demonstrated by using graded dielectric films instead of homogeneous films.The enhancements due to grading dielectric films were obtained by using perturbation theory to solve the governing equations with boundary conditions in Mindlin’s model of parallel-plate capacitors.We have shown that by grading both the relative permittivity and the elastic constant,we can obtain enhancement of almost 27%in capacitance for the 2.7 nm SrTiO_(3) dielectric film.In addition,the impact of various dielectric film properties on the overall capacitance was investigated.
文摘The experiment setup of a reflecting combination device, which has more advantages than a transmitting combination device, is designed in this study. To achieve angular spectrum selectivity, only one type of reflective component is needed,so difficulties of design and preparation are reduced. A dielectric multilayer film is applied to the reflective component, and the long wave-pass coating stacks of the structure are designed. To achieve high stopband transmittance and reduce electric field intensity at a wavelength of 1053 nm, an objective function is proposed for designing an optimized coating. The final optimized coating has good spectral characteristics and a high laser-induced damage threshold. A dielectric multilayer film with high reflectance plays an important role in preparing and applying a dielectric multilayer film reflecting cutoff filter-combination device.
基金Information Technology University of the Punjab, Lahore, Pakistan for financial supportthe financial support by Engineering Research Center Program(NRF-2015R1A5A1037668)+1 种基金global Ph.D. fellowship(NRF-2016H1A2A1906519)the KRF fellowship(NRF-2017H1D3A1A02011379)through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korean government
文摘Ti33O55 films are deposited with the help of an electron beam evaporator for their applications in metasurfaces. The film of subwavelength (632nm) thickness is deposited on a silicon substrate and annealed at 400℃. The ellipsometry result shows a high refractive index above 2.5 with the minimum absorption coefficient in the visible region, which is necessary for high efficiency of transparent metasurfaces. Atomic force microscopy analysis is employed to measure the roughness of the as-deposited films. It is seen from micrographs that the deposited films are very smooth with the minimum roughness to prevent scattering and absorption losses for metasurface devices. The absence of grains and cracks can be seen by scanning electron microscope analysis, which is favorable for electron beam lithography. Fourier transform infrared spectroscopy reveals the transmission and reflection obtained from the film deposited on glass substrates. The as-deposited film shows high transmission above 60%, which is in good agreement with metasurfaces.
文摘Dielectric polymer films are energy storage materials that are used in pulse power operations, power electronics and sustainable energy applications. This paper reviews energy storage devices with focus on dielectric film capacitors. Two prominent examples of polymer dielectrics Polyetherimide (PEI) and Poly (tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride) (THV) have been discussed. Polyetherimide (PEI) is an amorphous polymer recognized for its high-temperature capability, low dielectric loss and high dielectric strength. THV is a semi-crystalline polymer with high dielectric constant, high-temperature capability and charge-discharge efficiency. The primary focus of this paper is to introduce the reader to the fabrication procedures and characterization techniques used in research labs for processing of dielectric polymers. The fabrication and characterization process of both polymers has been discussed in detail to shed the light on experimental process in this area of research.
文摘The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.
文摘The variation of the dielectric constant e' and the dielectric loss e' of polyesteramide, alkyd polyesteramide and alkyd varnish dry films were measured within the frequency range from 105 to 107 Hz and the temperature range from 20 to 50℃. The varnish films were subjected to accelerated ageing by heating at 110℃ for diferent durations. The efect of the accelerated ageing on e' and e' were measured. The activation energy and the entropy change of dielectric relaxation for the dry films before and after ageing were also calculated. All the results obtained were recorded and discussed in correlation with the molecular structure of the investigated varnishes.
文摘Dielectric barrier discharge at atmospheric presure has been applied to prepare hydrocarbon films on large- area glass and silicon substrates. When hydrogen and methane mixture(2:1) is used as discharge gas and the substrate is heated to 300 C, hard hydrogenated amorphous carbon film is deposited. From the IR deconvolution analysis of the C-H stretching absorption for the coating, the hydrocarbon group ration (CH3:CH2:CH) and C-C bond type ratio (sp3c/sp2c) are about 10%: 21%: 69% and 3:1~6:1,respectively. Their Knoop hardness is up to 10Gpa. No film isdeposited when the content of methane in the mixed gases is decreased to 5% at 300 C silicon substrate.
文摘Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing.
基金This work was supported by the National Natural Science Foundation of China (No.51673181).
文摘We studied the dielectric properties of organosilicon-containing helical cyclopolymer PbMA which consists of PMMA main chains and tetramethyldisiloxane side rings. PbMA formed films with excellent uniformity through spin-coating onto highly n-doped silicon (n-Si) wafers for constructing devices of dielectric measurements, on which the dielectric properties and I-V characteristics of PbMA were studied. PbMA has a much lower dielectric constant (lower than 2.6) in the frequency range of 10-105 Hz, and better thermal stability than PMMA does. I-V data showed that the metal/PbMA/n-Si devices have different conducting directions, depending on whether Au or Al deposited over PbMA layers.
基金supported by the National Natural Science Foundation of China(Grant No.61205211)
文摘The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles 4-/3 are analyzed theoretically, based on the characteristic matrix method for extraordinary waves. Then, the transmittances of uniformity monolayer and bilayer STF in symmetrical style are calculated to show the effect of the bilayer structure on the optical properties of STF. The inhomogeneity of STF is involved in analyzing the differences in transmittance and phase retardation between monolayer and bilayer STF deposited in symmetric style. The results show that optical homogeneity of STF can be improved by depositing in symmetric style at the normal incidence, but it is not the same case as the oblique incidence.
文摘The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various deposition conditions have been observed by scanning electron microscope(SEM).The experimental results strongly indicate that the surface morphologies of the resulting films have closely related to the deposition conditions,i.e.,reaction pressure.For molybdenum substrates,under the lower reaction pressure the surface morphologies of the grains comprising the resulting films mainly display the small single crystal cubo-octahedron and double small crystal cubo-octahedron;under the higher reaction pressure,the surface morphologies mainly display the large cauliflower-like.These results show that there are various crystal habits for CVD diamond under various deposition conditions.
文摘The prerequisite and mode of electromagnetic response of nano metal/dielectric films to electromagnetic wave field were suggested. With the carrier density and the reflectance, transmittance of the film, the plasma frequency and the dependence of absorptance on the frequency of electromagnetic wave field were calculated respectively. The calculated results accorded with the experimental ones, which proved the plasma resonance is one mode of electromagnetic response.
基金supported by the Shanghai Pujiang Program(7pj14012)the National Nature Science Foundation of China(60608013).
文摘We proposed a method to evaluate the material dispersion of the dielectric film in dielectriccoated silver hollow fiber.By taking into consideration the derived material dispersion,the wavelengths of the loss peaks and valleys in the loss spectra of the hollow fiber can be predicted more accurately.Then,we fabricated the dielectric-coated silver hollow fiber according to the parameters obtained by using the improved design method.The measured data showed good agreement with the calculated results.The loss for medical laser of Er:YAG and CO_(2)was less than 0.3 dB/m.The loss for green or red pilot beams was around 5 dB/m,which is sufficiently low for the purpose of pilot beam transmission.The derived material dispersion plays an important role in the design and fabrication of the hollow fiber for multiwavelength delivery.
基金supported by the High Level Talent Project of Xiamen University of Technology,China(Grant Nos.YKJ16012R and YKJ16016R)the National Natural Science Foundation of China(Grant No.51702271)
文摘The N2-plasma treatment on a HfO2 blocking layer of Au nanocrystal nonvolatile memory without any post annealing is investigated. The electrical characteristics of the MOS capacitor with structure of Al–Ta N/HfO2/Si O2/p-Si are also characterized. After N2-plasma treatment, the nitrogen atoms are incorporated into HfO2 film and may passivate the oxygen vacancy states. The surface roughness of HfO2 film can also be reduced. Those improvements of HfO2 film lead to a smaller hysteresis and lower leakage current density of the MOS capacitor. The N2-plasma is introduced into Au nanocrystal(NC) nonvolatile memory to treat the HfO2 blocking layer. For the N2-plasma treated device, it shows a better retention characteristic and is twice as large in the memory window than that for the no N2-plasma treated device. It can be concluded that the N2-plasma treatment method can be applied to future nonvolatile memory applications.
基金supported by the State Key Laboratory of Pollution Control&Resources Reuse
文摘A new water falling film dielectric barrier discharge was applied to the degradation of sulfadiazine in the aqueous solution. The various parameters that affect the degradation of sulfadiazine and the proposed evolutionary process were investigated. The results indicated that the inner concentrations of 10 mg/L sulfadiazine can be all removed within 30 min. The optimum pH value was 9.10 and both strong acidic and alkaline solution conditions were not suitable for the degradation. The degradation of sulfadiazine can be enhanced by the addition of hydrogen radical scavengers, but be inhibited by adding hydroxyl radical scavengers. The water falling film dielectric barrier discharge was rather ineffective in mineralization, because of the intermediates were recalcitrant to be degraded. The existence of Fe2+ and CCI4 in the liquid phase can promote the degradation and mineralization of sulfadiazine. It was found that the degradation of SDZ was enhanced by CC14 was mainly because of the increase of'OH due to the reaction of CC14 with *H that reduce the chances of their recombination with "OH. Based on the 8 intermediate products identified by LC-MS, the proposed evolution of the degradation process was investigated.
基金supported by the State Key Program of National Natural Science Foundation of China(No. 50335010)the Zhejiang Provincial Natural Science Foundation(No.R105008),China
文摘The micro-Raman method is a non-contact and non-destructive method for thermal conductivity measurement.To reduce the measurement error induced by the poor fit of the basic equation of the original micro-Raman method,we developed a new basic equation for the heat source of a Gaussian laser beam.Based on the new basic equation,an analytical heat transfer model has been built to extend the original micro-Raman method to thin films with submicrometer-or nanometer-scale thickness.Ex-periments were performed to measure the thermal conductivity of dielectric thin films with submicrometer-or nanometer-scale thickness.The thermal resistance of the interface between dielectric thin films and their silicon substrate was also obtained.The obtained thermal conductivity of silicon dioxide film is 1.23W/(m.K),and the interface thermal resistance between silicon dioxide film and substrate is 2.35×10-8m2.K/W.The thermal conductivity and interface thermal resistance of silicon nitride film are 1.07W/(m.K)and 3.69×10-8m2.K/W,respectively.The experimental results are consistent with reported data.