Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natu...Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natural circulation,nucleate pool boiling is of great interest for this application.This paper examines the characteristics of vapor bubbles and nucleate pool boiling of the dielectric liquids.The results provide a theoretical foundation for understanding and interpreting the often complex empirical results reported in the literature.展开更多
We propose a low-cost compact microfluidic temperature sensor by virtue of the temperature-dependent permittivity of liquid.The sensor is composed of a coplanar waveguide(CPW)transmission line loaded with three resona...We propose a low-cost compact microfluidic temperature sensor by virtue of the temperature-dependent permittivity of liquid.The sensor is composed of a coplanar waveguide(CPW)transmission line loaded with three resonators and a microfluidic plate with three channels.The resonant frequency of each resonator relies on the temperature-dependent dielectric property of liquid in corresponding channel,which therefore can be used to extract the temperature.The proposed sensor features a compact size and low cost since it requires only micro fluid volume instead of additional electronic components to produce significant frequency shift with changing temperature.Moreover,it exhibits decent accuracy and stability in a temperature sensing range from 30℃ to 95℃.A theoretical analysis of the sensor is provided,followed by the detailed characterization method,and a prototype is designed,manufactured,and measured to verify the theoretical analysis.展开更多
In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperat...In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 ~C to 662.8 nm at 67 ~C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation.展开更多
The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitati...The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitative evaluation of surface tension in the bridge have not been evaluated. We present combined theoretical and experimental studies on this issue. Electrostriction is pointed out to be the driving force that pushes liquid upward against gravity and into the gap between two containers and forms the suspended bridge, which is within the framework of the Maxwell pressure tensor. Through a comparison between experiment and theory, the surface tension is found to play an important role in holding the long suspended bridge. Ignorance of the surface tension leads to much smaller bridge length than the experimental values. The dynamic stability of the bridge with respect to its diameter, length and conductance is also discussed.展开更多
We report the results of investigation of dielectric spectroscopy study of single crystals of Bi_(12)GeO_(20) and Bi_(12)GeO_(20) doped with Co nanoparticles.The complex dielectric constant was measured in the tempera...We report the results of investigation of dielectric spectroscopy study of single crystals of Bi_(12)GeO_(20) and Bi_(12)GeO_(20) doped with Co nanoparticles.The complex dielectric constant was measured in the temperature interval from 5 to 450K and frequencies from 1Hz to 1MHz.The electrical conductivity of both samples was thermally activated with potential barriers of 0.55eV and 0.59eV,respectively.Doped samples had bigger complex dielectric constants and σ′ exhibited slightly steeper temperature dependence than in the pure sample.The dielectric relaxation was observed in pure and doped single crystals and relaxation frequencies showed similar activation energies as electrical conductivities.展开更多
A liquid-loaded frequency tunable cavity bandpass filter (BPF) is presented. A dielectric fluidic material, dimethyl silicone oil (DSO) withexcellent thermophysical characteristics (working temperature from −50 ℃ to ...A liquid-loaded frequency tunable cavity bandpass filter (BPF) is presented. A dielectric fluidic material, dimethyl silicone oil (DSO) withexcellent thermophysical characteristics (working temperature from −50 ℃ to 180 ℃) and extremely low loss tangent is employed as a dielectric loading.The frequency reconfigurability of the proposed design is realized by altering the liquid level inside the cavity resonator. The filter achieves a widefrequency tuning range as well as a high Q factor. Moreover, this design shows significantly improved environmental suitability in extreme temperaturecases, outperforming the existing microfluidic-based RF devices using water or liquid metals. A four-pole tunable cavity bandpass filter is designed andverified. A cross-coupling structure comprising a metal loop structure is used to introduce transmission zeros in the proposed filter, which enhances theskirt selectivity and out-of-band rejections. We demonstrate that the center frequency of the proposed BPF can be tuned from 4.92 GHz to 6.16 GHz,and the filter achieves a high Q factor between 521 and 1527. The measured results agree well with simulated results.展开更多
文摘Direct cooling with inert,dielectric liquids may well become the technique of choice for the thermal manage- ment of future electronic systems.Due to the efficiency of phase-change processes and the simplicity of natural circulation,nucleate pool boiling is of great interest for this application.This paper examines the characteristics of vapor bubbles and nucleate pool boiling of the dielectric liquids.The results provide a theoretical foundation for understanding and interpreting the often complex empirical results reported in the literature.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ19F010007)the National Natural Science Foundation of China(Grants Nos.61901146 and 61874038)the Smart City Collaborative Innovation Center of Zhejiang Province,China
文摘We propose a low-cost compact microfluidic temperature sensor by virtue of the temperature-dependent permittivity of liquid.The sensor is composed of a coplanar waveguide(CPW)transmission line loaded with three resonators and a microfluidic plate with three channels.The resonant frequency of each resonator relies on the temperature-dependent dielectric property of liquid in corresponding channel,which therefore can be used to extract the temperature.The proposed sensor features a compact size and low cost since it requires only micro fluid volume instead of additional electronic components to produce significant frequency shift with changing temperature.Moreover,it exhibits decent accuracy and stability in a temperature sensing range from 30℃ to 95℃.A theoretical analysis of the sensor is provided,followed by the detailed characterization method,and a prototype is designed,manufactured,and measured to verify the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.61378042)the Outstanding Young Scholars Growth Plans of Colleges and Universities in Liaoning Province,China(Grant No.LJQ2013022)+1 种基金the Science and Technology Research of Liaoning Province,China(Grant No.L2010465)the Open Funds of Liaoning Province Key Laboratory of Laser and Optical Information of Shenyang Ligong University,China
文摘In this work, negative dielectric nematic liquid crystal SLC 12V620-400, chiral dopant S811, and laser dye DCM are used to prepare dye-doped chiral nematic liquid crystal laser sample. In order to investigate temperature-tunable lasing in negative dielectric chiral nematic liquid crystal, we measure the transmission and lasing spectrum of this sample. The photonic band gap (PBG) is observed to red shift with its width reducing from 71.2 nm to 40.2 nm, and its short-wavelength band edge moves 55.3 nm while the long-wavelength band edge only moves 24.9 nm. The wavelength of output laser is found to red shift from 614.4 nm at 20 ~C to 662.8 nm at 67 ~C, which is very different from the previous experimental phenomena. The refractive indices, parallel and perpendicular to the director in chiral nematic liquid crystal have different dependencies on temperature. The experiment shows that the pitch of this chiral nematic liquid crystal increases with the increase of temperature. The decrease in the PBG width, different shifts of band edges, and the red shift of laser wavelength are the results of refractive indices change and pitch thermal elongation.
文摘The mechanism of the formation of a surprisingly long suspended liquid bridge subjected to a dc electric field has been intensively studied in the past few decades. However, the role of electrostriction and quantitative evaluation of surface tension in the bridge have not been evaluated. We present combined theoretical and experimental studies on this issue. Electrostriction is pointed out to be the driving force that pushes liquid upward against gravity and into the gap between two containers and forms the suspended bridge, which is within the framework of the Maxwell pressure tensor. Through a comparison between experiment and theory, the surface tension is found to play an important role in holding the long suspended bridge. Ignorance of the surface tension leads to much smaller bridge length than the experimental values. The dynamic stability of the bridge with respect to its diameter, length and conductance is also discussed.
基金Research was supported by the Slovenian Research Agency(Grant No.P1-0125)The authors thank the Project operated within the Foun-dation for Polish Science Team Programme co-financed by the EU European Regional Development Fund and the FP7 NMP ENSEMBLE Project(GA NMP4-SL-2008-213669).
文摘We report the results of investigation of dielectric spectroscopy study of single crystals of Bi_(12)GeO_(20) and Bi_(12)GeO_(20) doped with Co nanoparticles.The complex dielectric constant was measured in the temperature interval from 5 to 450K and frequencies from 1Hz to 1MHz.The electrical conductivity of both samples was thermally activated with potential barriers of 0.55eV and 0.59eV,respectively.Doped samples had bigger complex dielectric constants and σ′ exhibited slightly steeper temperature dependence than in the pure sample.The dielectric relaxation was observed in pure and doped single crystals and relaxation frequencies showed similar activation energies as electrical conductivities.
基金supported in part by the National Defense Basic Scientific Research Program of China(Grant No.JCKYS2021DC05)in part by The Fund of Prospective Layout of Scientific Research for Nanjing University of Aeronautics and Astronautics(NUAA)。
文摘A liquid-loaded frequency tunable cavity bandpass filter (BPF) is presented. A dielectric fluidic material, dimethyl silicone oil (DSO) withexcellent thermophysical characteristics (working temperature from −50 ℃ to 180 ℃) and extremely low loss tangent is employed as a dielectric loading.The frequency reconfigurability of the proposed design is realized by altering the liquid level inside the cavity resonator. The filter achieves a widefrequency tuning range as well as a high Q factor. Moreover, this design shows significantly improved environmental suitability in extreme temperaturecases, outperforming the existing microfluidic-based RF devices using water or liquid metals. A four-pole tunable cavity bandpass filter is designed andverified. A cross-coupling structure comprising a metal loop structure is used to introduce transmission zeros in the proposed filter, which enhances theskirt selectivity and out-of-band rejections. We demonstrate that the center frequency of the proposed BPF can be tuned from 4.92 GHz to 6.16 GHz,and the filter achieves a high Q factor between 521 and 1527. The measured results agree well with simulated results.