This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for...This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the...With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the marine diesel engine has become focusing on energy saving and emission reduction for ships.For low-speed diesel engines under high load,waste heat from exhaust gas can be recovered by the compact and efficient gas turbine.In this paper,the matching design research between low speed diesel engine and gas turbine is carried out.To balance efficiency and compactness,the impeller was adjusted and generated by ANSYS BLADEGEN,based on 1D thermodynamic design.And the 1D calculation is similar to the ANSYS CFX simulation result:the total-static efficiency is 73.8%compared to 76.7%.Moreover,the flow separation happened at the impeller suction side and created vortex due to the high incidence angle.The off-design operating point simulation of the turbine shows though the pressure ratio increase will cause the efficiency to decline a little,the total shaft power rises.In sum,this paper worked out a power turbine suitable for a low-speed diesel engine according to the turbine character matching design and simulation,which provides foundation to the construction of a steady operation of waste heat recovery system for marine diesel engine.展开更多
The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new...The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.展开更多
A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot parti...A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot particles are spherical. That in this formula there consist neither constants needing adjustments nor variables related to engine types or operating conditions makes it universal and easy to use. Also it can be seen from the formula that radiation heat transfer is proportional to the quotient of in-cylinder soot mass over the average radius of primary particles. Besides, with the help of different algorithms it can be used for predicting cylinders' global as well as local radiation heat flows. As a demonstrative application on its global facet, a three-dimension simulation study about the soot-radiation-related heat flow in the combustion chamber of a diesel engine is carried out. Results show that the range of the soot-radiation-related heat flow computed by this formula agrees well with other researcher's earlier theoretic reasoning and experimental measurements.展开更多
Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditio...Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditions of the attribute index for the suitability zoning of the northwest of Shandong are determined, namely, hydrodynamic condition, geological and hydrogeological condition and geological environment condition. The assessment result is that the total area of the suitable zone is 205.88 km^2, that of relative suitable zone, 1 407.76 km^2, and that of unsuitable zone, 286.8 km^2. The result conforms to the real development situation and provides experience for similar regions needed for selecting and assigning a value to suitability zoning of GSHP.展开更多
Application of CuO-water nanofluid with size of the nanoparticles of 20 nm and volume concentrations up 2% is numerically investigated in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions....Application of CuO-water nanofluid with size of the nanoparticles of 20 nm and volume concentrations up 2% is numerically investigated in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions. The heat transfer relations between airflow and nanofluid coolant have been obtained to evaluate local convective and overall heat transfer coefficients and also pumping power for nanofluid flowing in the radiator with a given heat exchange capacity. In the present study, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. The results show that for CuO-water nanofluid at 2% volume concentration circulating through the flat tubes with Renf = 6000 while the automotive speed is 70 km/hr, the overall heat transfer coefficient and pumping power are approximately 10% and 23.8% more than that of base fluid for given conditions, respectively.展开更多
A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC ...A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.展开更多
The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however,...The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.展开更多
A controllable mechanical turbo-compounding(CMTC) system including continuously variable transmission(CVT) and power turbine bypass valve is proposed to recover waste heat from engine exhaust. The combined matching pr...A controllable mechanical turbo-compounding(CMTC) system including continuously variable transmission(CVT) and power turbine bypass valve is proposed to recover waste heat from engine exhaust. The combined matching principle considering swallowing capacity of both charging turbine and power turbine, main gear ratio is investigated at first based on the analysis of individual influence. Then the effects and strategies of CVT and power turbine bypass valve are studied for better performance under off-design conditions. At last, the transient response of intake pressure of engine with CMTC system is researched and the fuel saving potential is tested under driving cycle conditions. The results indicate that the overall fuel efficiency elevates at the off-design conditions if CVT is adopted due to the improvement of power turbine operating efficiency by speed modulation. The diversion of exhaust through power turbine bypass valve under the low load condition is necessary. The back pressure of the charging turbine infuences the transient response of intake pressure for a fixed CMTC configuration. A method featured by the assistance of power turbine bypass valve is tested to improve the transient response of the intake pressure. The fuel consumption reduces by 2% and 3.4% under highway fuel economy test(HWFET) and Tianjin 503(TJ503) driving cycles respectively.展开更多
Waste heat recovery for internal combustion engine(ICE)has been considered as an important strategy to improve efficiency and promote fuel economy,thus alleviating the problems of energy shortage and environmental pol...Waste heat recovery for internal combustion engine(ICE)has been considered as an important strategy to improve efficiency and promote fuel economy,thus alleviating the problems of energy shortage and environmental pollution.This paper investigates the characteristics of various kinds of waste heat energy,namely,waste heat in exhaust,cooling water and charge air,over the engine’s whole operating region.Based on the energy balance experiments,the energy distribution of a conventional heavy-duty diesel engine is obtained under mapping characteristics.According to exergy analysis,the energy recovery potential for waste heat is studied as well.The experimental results indicate that exhaust energy increases with engine speed and load,while cooling water energy is more sensitive to load,especially at low and middle speed.Charge air energy,on the other hand,mainly counts on speed rather than load.Exhaust energy possesses the highest recovery potential in terms of both quantity and quality.Through waste heat recovery,a dramatic improvement in engine efficiency is achievable,actually,the maximum value can amount to 60%or even more.展开更多
Combustion chamber components (cylinder head-cylinder liner-piston assembly-fuel film) were treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, the mult...Combustion chamber components (cylinder head-cylinder liner-piston assembly-fuel film) were treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, the multi-dimensional simulation computation coupling flow and solid on working process and combustion chamber components of internal combustion engine was performed using Discrete Transfer Radiation Model (DTRM) radiation heat transfer model, zoning solution method and boundary coupling method. The simulation was applied to the influence investigation of the space non-uniformity in radiation heat transfer among combustion chamber components on the generation of in-cylinder soot emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The difference value of total soot in cylinder when exhaust valves are opened is 1.3% (no radiation), 0.8% (radiation). So the effect of radiation heat transfer space non-uniformity of combustion chamber components on total soot production can be ignored. While in local area radiation heat transfer space non-uniformity has certain effect on soot production inside whole combustion chamber space, and has less effect on soot production in the area near the wall of combustion chamber components.展开更多
Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are pr...Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are promising for the substitution of fossil diesel fuel.Vegetable oils poses some characteristics like durability,high viscosity and low volatility compared to mineral diesel fuel.In the present work,experiments were designed to study the effect of reducing kusum and karanja oil’s viscosity by preheating the fuel,using a shell and tube heat exchanger.The acquired engine data were analyzed for various parameters such as brake thermal efficiency,brake specific energy consumption(BSEC),emission of exhaust gases like CO,CO_(2),HC and NO_(x).In operation,the engine performance with kusum and karanja oil(preheated),was found to be very close to that of diesel.The preheated oil's performances were found to be slightly inferior in efficiency due to low heating value.The performance of karanja oil was found better than kusum oil in all respects.展开更多
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel e...One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%.展开更多
基金supported by the National Key Research and Development Program of China[Grant No.2017YFE0116100]the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China[Grant No.KYCX20_2821].
文摘This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
文摘With the emphasis on energy and environmental protection,energy-conservation and emission-reduction become vital issues for industrial development.Moreover,with the development of legislation on marine environment,the marine diesel engine has become focusing on energy saving and emission reduction for ships.For low-speed diesel engines under high load,waste heat from exhaust gas can be recovered by the compact and efficient gas turbine.In this paper,the matching design research between low speed diesel engine and gas turbine is carried out.To balance efficiency and compactness,the impeller was adjusted and generated by ANSYS BLADEGEN,based on 1D thermodynamic design.And the 1D calculation is similar to the ANSYS CFX simulation result:the total-static efficiency is 73.8%compared to 76.7%.Moreover,the flow separation happened at the impeller suction side and created vortex due to the high incidence angle.The off-design operating point simulation of the turbine shows though the pressure ratio increase will cause the efficiency to decline a little,the total shaft power rises.In sum,this paper worked out a power turbine suitable for a low-speed diesel engine according to the turbine character matching design and simulation,which provides foundation to the construction of a steady operation of waste heat recovery system for marine diesel engine.
基金This work was supported by the National Key Research and Development Project of China(Grant No.2017YFB0103504)National Natural Science Foundation of China(Grant No.51576116).
文摘The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.
基金Sponsored by the National "973" Program Projects(652345)
文摘A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot particles are spherical. That in this formula there consist neither constants needing adjustments nor variables related to engine types or operating conditions makes it universal and easy to use. Also it can be seen from the formula that radiation heat transfer is proportional to the quotient of in-cylinder soot mass over the average radius of primary particles. Besides, with the help of different algorithms it can be used for predicting cylinders' global as well as local radiation heat flows. As a demonstrative application on its global facet, a three-dimension simulation study about the soot-radiation-related heat flow in the combustion chamber of a diesel engine is carried out. Results show that the range of the soot-radiation-related heat flow computed by this formula agrees well with other researcher's earlier theoretic reasoning and experimental measurements.
基金supported by survey and evaluation of shallow geothermal energy in the main cities,China(12120113077200)
文摘Based on the basic geology, hydrogeology, engineering geology, geothermal geology and ground source heat pump(GSHP) engineering of the work space, the thesis studies the local shallow geothermal energy. Three conditions of the attribute index for the suitability zoning of the northwest of Shandong are determined, namely, hydrodynamic condition, geological and hydrogeological condition and geological environment condition. The assessment result is that the total area of the suitable zone is 205.88 km^2, that of relative suitable zone, 1 407.76 km^2, and that of unsuitable zone, 286.8 km^2. The result conforms to the real development situation and provides experience for similar regions needed for selecting and assigning a value to suitability zoning of GSHP.
文摘Application of CuO-water nanofluid with size of the nanoparticles of 20 nm and volume concentrations up 2% is numerically investigated in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions. The heat transfer relations between airflow and nanofluid coolant have been obtained to evaluate local convective and overall heat transfer coefficients and also pumping power for nanofluid flowing in the radiator with a given heat exchange capacity. In the present study, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. The results show that for CuO-water nanofluid at 2% volume concentration circulating through the flat tubes with Renf = 6000 while the automotive speed is 70 km/hr, the overall heat transfer coefficient and pumping power are approximately 10% and 23.8% more than that of base fluid for given conditions, respectively.
基金supported by the National Natural Science Foundation of China (Grant No. 51076013)the Specialized Research Fund for the Doc-toral Program of Higher Education of China (Grant No. 20101101110008)
文摘A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB707206)
文摘The Rankine cycle system for waste heat recovery of heavy-duty vehicle diesel engines has been regarded as a promising tech- nique to reduce fuel consumption. Its heat dissipation in the condensation process, however, should be take:l away in time, which is an energy-consuming process. A fan-assisted auxiliary water-cooling system is employed in this paper. Results at 1300 r/min and 50% load indicate that the cooling pump and cooling fan together consume 7.66% of the recovered power. What's worse for the heavy load, cooling accessories may deplete of all the recovered power of the Rankine cycle system. Af- terwards, effects of the condensing pressure and water feeding temperature are investigated, based on which a cooling power consumption model is established. Finally, an overall efficiency optimization is conducted to balance the electric power gener- ation and cooling power consumption, taking condensing pressure, pressure ratio and exhaust bypass valve as major variables. The research suggests that the priority is to increase condensing pressure and open exhaust bypass valve appropriately at high speed and heavy load to reduce the cooling power consumption, while at low speed and light load, a lower condensing pressure is favored and the exhaust bypass valve should be closed making the waste heat recovered as much as possible. Within the sub-critical region, a larger pressure ratio yields higher overall efficiency improvement at medium-low speed and load. But the effects taper off at high speed and heavy load. For a given vehicular heavy-duty diesel engine, the overall e:'ficiency can be improved by 3.37% at 1300 r/min and 25% load using a Rankine cycle system to recover exhaust energy. The improvement becomes smaller as engine speed and load become higher.
基金supported by the National Basic Research Program of China(Grant No.2011CB707206)
文摘A controllable mechanical turbo-compounding(CMTC) system including continuously variable transmission(CVT) and power turbine bypass valve is proposed to recover waste heat from engine exhaust. The combined matching principle considering swallowing capacity of both charging turbine and power turbine, main gear ratio is investigated at first based on the analysis of individual influence. Then the effects and strategies of CVT and power turbine bypass valve are studied for better performance under off-design conditions. At last, the transient response of intake pressure of engine with CMTC system is researched and the fuel saving potential is tested under driving cycle conditions. The results indicate that the overall fuel efficiency elevates at the off-design conditions if CVT is adopted due to the improvement of power turbine operating efficiency by speed modulation. The diversion of exhaust through power turbine bypass valve under the low load condition is necessary. The back pressure of the charging turbine infuences the transient response of intake pressure for a fixed CMTC configuration. A method featured by the assistance of power turbine bypass valve is tested to improve the transient response of the intake pressure. The fuel consumption reduces by 2% and 3.4% under highway fuel economy test(HWFET) and Tianjin 503(TJ503) driving cycles respectively.
基金supported by the National Natural Science Foundation of China(Grant No.51206117)
文摘Waste heat recovery for internal combustion engine(ICE)has been considered as an important strategy to improve efficiency and promote fuel economy,thus alleviating the problems of energy shortage and environmental pollution.This paper investigates the characteristics of various kinds of waste heat energy,namely,waste heat in exhaust,cooling water and charge air,over the engine’s whole operating region.Based on the energy balance experiments,the energy distribution of a conventional heavy-duty diesel engine is obtained under mapping characteristics.According to exergy analysis,the energy recovery potential for waste heat is studied as well.The experimental results indicate that exhaust energy increases with engine speed and load,while cooling water energy is more sensitive to load,especially at low and middle speed.Charge air energy,on the other hand,mainly counts on speed rather than load.Exhaust energy possesses the highest recovery potential in terms of both quantity and quality.Through waste heat recovery,a dramatic improvement in engine efficiency is achievable,actually,the maximum value can amount to 60%or even more.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50576008 and 50876016)Natural Science Founda-tion of Liaoning Province (Grant No. 20062180)
文摘Combustion chamber components (cylinder head-cylinder liner-piston assembly-fuel film) were treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, the multi-dimensional simulation computation coupling flow and solid on working process and combustion chamber components of internal combustion engine was performed using Discrete Transfer Radiation Model (DTRM) radiation heat transfer model, zoning solution method and boundary coupling method. The simulation was applied to the influence investigation of the space non-uniformity in radiation heat transfer among combustion chamber components on the generation of in-cylinder soot emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The difference value of total soot in cylinder when exhaust valves are opened is 1.3% (no radiation), 0.8% (radiation). So the effect of radiation heat transfer space non-uniformity of combustion chamber components on total soot production can be ignored. While in local area radiation heat transfer space non-uniformity has certain effect on soot production inside whole combustion chamber space, and has less effect on soot production in the area near the wall of combustion chamber components.
文摘Scarcity of conventional petroleum resources has promoted research in alternative fuels for internal combustion engines.Among various possible options,fuels derived from triglycerides(vegetable oils/animal fats)are promising for the substitution of fossil diesel fuel.Vegetable oils poses some characteristics like durability,high viscosity and low volatility compared to mineral diesel fuel.In the present work,experiments were designed to study the effect of reducing kusum and karanja oil’s viscosity by preheating the fuel,using a shell and tube heat exchanger.The acquired engine data were analyzed for various parameters such as brake thermal efficiency,brake specific energy consumption(BSEC),emission of exhaust gases like CO,CO_(2),HC and NO_(x).In operation,the engine performance with kusum and karanja oil(preheated),was found to be very close to that of diesel.The preheated oil's performances were found to be slightly inferior in efficiency due to low heating value.The performance of karanja oil was found better than kusum oil in all respects.
文摘One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources.The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered.It is suggested to conduct the study with the help of mathematical modeling methods.The model takes into account basic physical correlations,material and thermal balances,phase equilibrium,and heat and mass transfer processes.The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel.In such a plant,it is possible to reduce the specific fuel consumption of the diesel engine by 20%.The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6.When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products,the efficiency coefficient of the plant increases by 4%–5%.