期刊文献+
共找到2,613篇文章
< 1 2 131 >
每页显示 20 50 100
Combined Effect of a Catalytic Reduction Device with Waste Frying Oil-Based Biodiesel on NOx Emissions of Diesel Engines
1
作者 Samson K. Fasogbon Vincent N. Ugwah +2 位作者 Olaleye M. Amoo Patrick Ajaero Ogagaoghene D. Emma-Egoro 《Modern Mechanical Engineering》 CAS 2022年第3期63-73,共11页
Internal combustion engines with application in automobiles and other relevant industries constitute significant environmental pollution via the release of toxic exhaust gasses like carbon monoxide (CO), hydrocarbons ... Internal combustion engines with application in automobiles and other relevant industries constitute significant environmental pollution via the release of toxic exhaust gasses like carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrogen oxide (NO<sub>x</sub>). Engine researchers and manufacturers are challenged to develop external and internal measures to ensure environmentally friendly solutions to accommodate and conform to the growing list of emission standards. Therefore, this work presents an experimental investigation of the NO<sub>x</sub> emission profile of a diesel engine that is fuelled and fitted with waste frying oil-based biodiesel and catalytic converter. Using a single-cylinder, four-stroke air-cooled CI engine at a constant speed of 1900 rpm and different loadings of 25%, 50%, 75%, and 100%;fitted with a catalytic converter at the exhaust outlet of the engine and linked to a dynamometer and a gas analyser, an experiment was conducted at biodiesel/diesel volume blends of B0 (0/10), B5 (5/95), B20 (20/80), B30 (30/70), B70 (70/30), B100 (100/0);and 30% concentration (v/v), 0.5 litre/hr flow rate of aqueous urea from the catalytic converter. The results show an increasing NO<sub>x</sub> emission as the biodiesel component increased in the blend. The catalytic converter showed a downward NO<sub>x</sub> reduction with a significant 68% reduction in efficiency at high exhaust gas temperatures. It is concluded that the combined utilisation of waste frying oil-based biodiesel and the catalytic converter yields substantial NO<sub>x</sub> emission reduction. 展开更多
关键词 Catalytic Converter Waste Frying Oil BIOdiesel nox emission diesel engines
下载PDF
Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine 被引量:6
2
作者 SHI Xiaoyan YU Yunbo +3 位作者 HE Hong SHUAI Shijin DONG Hongyi LI Rulong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第2期177-182,共6页
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-d... In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs). 展开更多
关键词 diesel engine biomass fuel selective catalytic reduction nox particulate matter (PM)
下载PDF
Validation of an Emission Model for a Marine Diesel Engine with Data from Sea Operations 被引量:4
3
作者 Luigia Mocerino CGuedes Soares +2 位作者 Enrico Rizzuto Flavio Balsamo Franco Quaranta 《Journal of Marine Science and Application》 CSCD 2021年第3期534-545,共12页
In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to co... In this study,a model is developed to simulate the dynamics of an internal combustion engine,and it is calibrated and validated against reliable experimental data,making it a tool that can effectively be adopted to conduct emission predictions.In this work,the Ricardo WAVE software is applied to the simulation of a particular marine diesel engine,a four-stroke engine used in the maritime field.Results from the bench tests are used for the calibration of the model.Finally,the calibration of the model and its validation with full-scale data measured at sea are presented.The prediction includes not only the classic engine operating parameters for a comparison with surveys but also an estimate of nitrogen oxide emissions,which are compared with similar results obtained with emission factors.The calibration of the model made it possible to obtain an overlap between the simulation results and real data with an average error of approximately 7%on power,torque,and consumption.The model provides encouraging results,suggesting further applications,such as in the study on transient conditions,coupling of the engine model with the ship model for a complete simulation of the operating conditions,and optimization studies on consumption and emissions.The availability of the emission data during the sea trial and validated simulation results are the strengths and novelties of this work. 展开更多
关键词 SIMULATION Marine diesel engine model Four-stroke engine Exhaust emissions Nitrogen oxide emissions Sea trials
下载PDF
Optimization of the Performance of Marine Diesel Engines to Minimize the Formation of SO_x Emissions 被引量:6
4
作者 Mina Tadros Manuel Ventura C.Guedes Soares 《Journal of Marine Science and Application》 CSCD 2020年第3期473-484,共12页
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemente... Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications. 展开更多
关键词 Marine diesel engine Standard procedures SO_x emissions Surrogate model Response surface methodology
下载PDF
Research on Spray, Combustion and Emission Characteristics for DI Diesel Engine 被引量:1
5
作者 葛蕴珊 张世鹰 +1 位作者 周磊 张付军 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期17-21,共5页
To improve the combustion chamber shape that can decrease the directed injection (DI) diesel emission, the theories of DI diesel spray, combustion and pollutant formation model are analysed and implemented based on ... To improve the combustion chamber shape that can decrease the directed injection (DI) diesel emission, the theories of DI diesel spray, combustion and pollutant formation model are analysed and implemented based on the CFD code FIRE. Results show that the chamber with contracting orifice can get stronger squish swirl intensity. The results of the verification studies show a good accordance with the measurements and reveal that the individual processes of spray, evolution, combustion and pollutant formation are well captured in FIRE. Finally, based on the analyzing and comparing of the calculation results of different chambers, a combustion chamber of contracting orifice geometry with lower emission is proposed. 展开更多
关键词 three-dimensional CFD calculation DI diesel engine SPRAY COMBUSTION emission
下载PDF
Research on the Impact of CeO2 -based Solid Solution Metal Oxide on Combustion Performance of Diesel Engine and Emissions 被引量:1
6
作者 Zhipeng Xin Yunbang Tang Changzhong Man Yince Zhao Jianlu Ren 《Journal of Marine Science and Application》 2013年第3期374-379,共6页
This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,In... This paper mainly studies on the performance of high-speed diesel engines and emission reduction when the engine uses heavy oil mixed with nanometer-sized additives Ce0.9 Cu0.1 O2 and Ce0.9 Zr0.1 O2.During the test,Indiset 620 combustion analyzer made by AVL,was used to make a real-time survey on the cylinder pressure,the fuel ignition moment,and establish a relation between the change trend of temperature in cylinder and the crank angle.For the engine burning heavy oil and heavy oil mixed with additives,combustion analysis software Indicom and Concerto were used to analyze its combustion process and emission conditions.Experimental investigation shows that nano-sized complex oxide can improve the performance of diesel engine fueled with heavy oil,and reduce the emission of pollutants like NOx and CO,comparing it with the pure heavy oil.According to the consequences of this experiment,the additives improve the overall performance in the use of heavy oil. 展开更多
关键词 oil additives nano-sized complex oxide diesel engine combustion analysis emissionS
下载PDF
Experimental Study on the Performance and Emission of Chinese Small Agricultural Diesel Engine Fuelled with Methanol/Biodiesel/DTBP 被引量:1
7
作者 Ruina Li Liang Zhang +2 位作者 Jialong Zhu Yan Hua Zhong Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期67-78,共12页
Diesel engine alternative fuels, such as methanol and biodiesel, are beneficial to reduce diesel engine emission. In order to study the influence of methanol and biodiesel on the performance, economy and emission of s... Diesel engine alternative fuels, such as methanol and biodiesel, are beneficial to reduce diesel engine emission. In order to study the influence of methanol and biodiesel on the performance, economy and emission of small agricultural diesel engine, the physical-chemical properties(cetane number, lower heat value(LHV), viscosity, etc.) of methanol and biodiesel were analyzed. The methanol and biodiesel showed good complementary property to some extent. When a large proportion of methanol was added into biodiesel, the cetane number of the methanol/biodiesel blend will be greatly reduced. Since the cetane number of the blend fuel has great influence on the combustion process of diesel engine, after testing for blending ratio of methanol/biodiesel, the blend was prepared with 5%(BM5), 10%(BM10) and 15%(BM15) methanol, respectively. Di-Tert-Butyl Peroxide(DTBP) was chosen as a cetane number improver to be added into methanol/biodiesel blend. 0.25%, 0.50% and 0.75% of DTBP was added into BM15. The bench test was carried out on a 186 FA diesel engine to study the effect of methanol and DTBP on the engine performance and emissions. The results show that, at rated condition, compared with biodiesel, the NO;concentration of BM5, BM10 and BM15 is reduced by 5.02%, 33.85% and 21.24%, and smoke is reduced by 5.56%, 22.22% and 55.56%. However, the engine power is also reduced by 5.77%, 14.23% and 25.41%, and the brake specific energy consumption is increased by 3.31%, 7.78% and 6.37%. The addition of DTBP in methanol/biodiesel could recover the engine power to the level of diesel. DTBP shows good effect on the reduction of the brake specific energy consumption and NO_(x), CO, HC concentration, but a little increase of exhaust smoke. 展开更多
关键词 METHANOL BIOdiesel agricultural diesel engine COMBUSTION performance emission
下载PDF
Analysis of the Emissions and Performance of a Diesel Engine Using Pumpkin Seed Oil Methyl Ester with Different Injection Pressures
8
作者 Surendrababu Kuppusamy Prabhahar Muthuswamy +1 位作者 Muthurajan Kumarasamy Sendilvelan Subramanian 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1003-1014,共12页
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co... Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar. 展开更多
关键词 Pumpkin seed biodiesel PERFORMANCE emission diesel engine injection pressure
下载PDF
Effects of Hydrogen Addition on Power and Emissions Outputs from Diesel Engines
9
作者 Momen Sughayyer 《Journal of Power and Energy Engineering》 2016年第1期47-56,共10页
Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of... Energy efficiency and environmental impact have become dominant topics in internal combustion engines development. Among many strategies to improve power and emissions outputs from diesel engines is the partial mix of hydrogen and air as fresh charge components to form extremely lean and homogenous mixture, which resist the spontaneous combustion, while diesel fuel is injected directly inside combustion chamber using the conventional fuel injection systems. This contribution presents an analytical and experimental investigation for the effects of adding hydrogen on diesel engines power output and the reduction of emissions. Parametric analysis is used based on lamped parameters modeling of intake manifold to estimate in cylinder trapped charge. The fuel energy flow to engine cylinders is compared for a range of loads and concentrations to simulate relevant case studies. Diesel fuel reduction for significant range of part-load operation can be achieved by introducing hydrogen, along with power improvement emission reductions are affected positively as well. This is achievable without compromising the engine maximum efficiency, given that most engines are operated at small and part-load during normal driving conditions, which allow for introducing more hydrogen instead of large quantities of excess air during such operation conditions that also can be further improved by charge boosting. 展开更多
关键词 Energy Efficiency Power and emissions diesel engines HYDROGEN Air-Fuel Ratio
下载PDF
A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine
10
作者 Lingjie Zhao Cong Li 《Energy Engineering》 EI 2024年第5期1363-1380,共18页
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ... The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced. 展开更多
关键词 Miller cycle EIVC COMBUSTION nox emissions marine diesel
下载PDF
Computational investigation of the effect of biodiesel fuel properties on diesel engine NOx emissions 被引量:1
11
作者 Wenqiao Yuan A.C.Hansen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2009年第2期41-48,共8页
A detailed numerical spray atomization,ignition,combustion and nitrogen oxides(NOx)formation model was developed for direct injection diesel engines by using KIVA3V code.Several modified or recalibrated sub-models inc... A detailed numerical spray atomization,ignition,combustion and nitrogen oxides(NOx)formation model was developed for direct injection diesel engines by using KIVA3V code.Several modified or recalibrated sub-models including a Kelvin-Helmholtz Rayleigh-Taylor(KH-RT)spray breakup model,a Shell ignition model,a single-step kinetic combustion model and a Zel’dovich NOx formation model were incorporated into KIVA3V.This modified model was validated by experimental data obtained from a John Deere 4045T direct injection diesel engine that was fueled with a natural soybean methyl ester,a yellow grease methyl ester,a genetically modified soybean methyl ester and No.2 diesel fuel.Errors between predictions of the brake-specific NOx and measured values were less than 1%at full load.For biodiesel fuels,either the Zel’dovich mechanism overpredicted NOx emissions,the ratio of NO to NOx should be less than diesel fuel,or both.As observed from the modeling results,the higher latent heat of vaporization and higher surface tension of biodiesel relative to diesel fuel did not result in increased NOx emissions.The higher viscosity of biodiesel could be one of the reasons for increased NOx,but its effect was relatively small compared with the effect of decreased spray cone angle and advanced start of injection timing on NOx.Decreased spray cone angle and advanced start of injection were the main reasons for increased NOx emissions of biodiesel. 展开更多
关键词 BIOdiesel diesel engine modeling nox emissions
原文传递
Numerical Investigation of the Effects of Rate-Shaped Main Injection on Combustion and Emission in an OPOC Two-Stroke Diesel Engine
12
作者 Lei Zhang Tiexiong Su +3 位作者 Yunpeng Feng Fukang Ma Yangang Zhang Jun Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期226-233,共8页
The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-... The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates. 展开更多
关键词 opposed-piston opposed-cylinder(OPOC)diesel engine split INJECTION rated-shape MAIN injection:numerical simulation combustion emissions
下载PDF
Study on effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder NOx emission formation in internal combustion engine
13
作者 吕继祖 白敏丽 周龙 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第4期56-62,共7页
The components of combustion chamber (cylinder head-cylinder liner-piston assembly-oil film) were taken as a coupled body.Based on the three-dimensional heat transfer numerical simulation of the coupled body,a coupled... The components of combustion chamber (cylinder head-cylinder liner-piston assembly-oil film) were taken as a coupled body.Based on the three-dimensional heat transfer numerical simulation of the coupled body,a coupled three-dimensional calculation model for in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupled method,which implements the coupled three-dimensional simulation of in-cylinder working process and the combustion chamber components.The model was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions:NOx.The results showed that the heat transfer space non-uniformity of combustion chamber components directly influences the formation of in-cylinder NOx.The main area being influenced was the accessory area on the wall,while the influence on the generation of NOx in the central area couold be omitted. 展开更多
关键词 Heat transfer space non-uniformity nox emission IN-CYLINDER diesel
下载PDF
Effect of <i>γ</i>-Valerolactone Blending on Engine Performance, Combustion Characteristics and Exhaust Emissions in a Diesel Engine
14
作者 ákos Bereczky Kristóf Lukács +1 位作者 Mária Farkas Sándor Dóbé 《Natural Resources》 2014年第5期177-191,共15页
γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil d... γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far. 展开更多
关键词 Second Generation BIOFUEL γ-Valerolactone diesel BLEND engine Performance emissions
下载PDF
Compacted graphite iron-A material solution for modern diesel engine cylinder blocks and heads 被引量:14
15
作者 Steve Dawson SinterCast Sweden 《China Foundry》 SCIE CAS 2009年第3期241-246,共6页
The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary pat... The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years. 展开更多
关键词 compacted graphite iron modern diesel engine performance emission cylinder blocks and heads
下载PDF
Complete Modeling for Systems of a Marine Diesel Engine 被引量:6
16
作者 Hassan Moussa Nahim Rafic Younes +1 位作者 Chadi Nohra Mustapha Ouladsine 《Journal of Marine Science and Application》 CSCD 2015年第1期93-104,共12页
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i... This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others). 展开更多
关键词 marine diesel engine engine system cooling system lubrication system air system injection system combustion system emissions system fault diagnosis and estimation (FDI)
下载PDF
Injection of N-Radicals into Diesel Engine Exhaust Treated by Plasma for Improved NO_x Removal: A Feasibility Study 被引量:3
17
作者 B. S. RAJANIKANTH B. R. SUSHMA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期202-206,共5页
Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by... Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed, 展开更多
关键词 N-radical diesel engine exhaust nox removal plasma treatment
下载PDF
EFFECTS OF INJECTION STRATEGY ON D.I. DIESEL ENGINE COMBUSTION 被引量:2
18
作者 ZI Xinyun JIANG Dahai +2 位作者 DENG Chenglin OUYANG Minggao YANG Fuyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期71-74,共4页
Experiments are conducted to develop an understanding of how split injections can affect the combustion and emission characteristics of a D.I. diesel engine with a common-rail injection system. The ratio of the amount... Experiments are conducted to develop an understanding of how split injections can affect the combustion and emission characteristics of a D.I. diesel engine with a common-rail injection system. The ratio of the amount of fuel injected between two injection pulses and the injection interval is varied keeping the injected fuel quantity constant. Results show that under the 70D90-10 injection pattern, the engine achieves the lower NOx-smoke emissions and BSFC compared with the single injection pattern. The heat release rate and the temperature show that the split injections increase the initial premixed burn and retards the diffusion burn. With the balance of these two effects, the maximum in-cylinder temperature decreases while the 50% heat release point is held at almost the same crank angle. Therefore, both NOx emission and BSFC are improved while keeping the smoke emission at the same level. 展开更多
关键词 diesel engine High pressure common rail Split injections emission
下载PDF
Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NO_x Removal in Raw Diesel Engine Exhaust 被引量:3
19
作者 Sankarsan MOHAPATRO B.S.RAJANIKANTH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第1期82-87,共6页
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to t... Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates. 展开更多
关键词 electric discharges nox removal non-thermal plasma raw diesel engine exhaust
下载PDF
Design and optimization of exhaust gas aftertreatment system for a heavy-duty diesel engine 被引量:1
20
作者 TAN Pi-qiang YAO Chao-jie +3 位作者 WANG De-yuan ZHU Lei HU Zhi-yuan LOU Di-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2127-2141,共15页
Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reductio... Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems. 展开更多
关键词 diesel engine emission exhaust gas aftertreatment computational model optimal design
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部