The present work examines the use of a non-edible vegetable oil namely honne oil,a new possible source of alternative fuel for diesel engine.A Direct Injection(DI)diesel engine typically used in agricultural sector wa...The present work examines the use of a non-edible vegetable oil namely honne oil,a new possible source of alternative fuel for diesel engine.A Direct Injection(DI)diesel engine typically used in agricultural sector was operated on Neat Diesel(ND)and neat honne oil(H100).At maximum load,with H100,brake thermal efficiency and NOx emission decreased where as emissions like CO,HC,smoke opacity increased.With H100,peak cylinder pressure and maximum rate of pressure rise decreased compared to ND.With H100,occurrence of peak pressure is away from top dead center compared to ND.With H100,ignition delay and combustion duration increased compared to ND.展开更多
Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possi...Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possible source of alternative fuel that can be used as diesel engine fuel.Literature pertaining to use of vegetable oil in diesel engine with kerosene and dimethyl carbonate(DMC)is scarce.The present research is aimed to investigate experimentally the performance,exhaust emission and combustion characteristics of a direct injection(DI)diesel engine,typically used in agricultural sector,over the entire load range,when fuelled with neat diesel(ND)and blends of diesel fuel(D)/DMC/H/kerosene(K).DMC/D/H/K blends have a potential to improve the performance and emissions and to be an alternative to ND.Experiments have been conducted when fuelled with H20(20%H+80%D),HK(20%H+40%K+40%D)and HKD5(20%H+40%K+35D+5%DMC)to HKD15 in steps of 5%DMC keeping H and K percentages constant.The emissions(CO,HC and smoke density(SD))of fuel blend HKD15 are found to be lowest,with SD dropping significantly.The NOx level is slightly higher with HKD5 to HKD15 as compared to ND.The brake thermal efficiency of HKD5 to HKD15 is same and it is higher than that of ND.There is a good trade off between NOx and SD.Peak cylinder pressure and premixed combustion phase increases as DMC content increase.展开更多
文摘The present work examines the use of a non-edible vegetable oil namely honne oil,a new possible source of alternative fuel for diesel engine.A Direct Injection(DI)diesel engine typically used in agricultural sector was operated on Neat Diesel(ND)and neat honne oil(H100).At maximum load,with H100,brake thermal efficiency and NOx emission decreased where as emissions like CO,HC,smoke opacity increased.With H100,peak cylinder pressure and maximum rate of pressure rise decreased compared to ND.With H100,occurrence of peak pressure is away from top dead center compared to ND.With H100,ignition delay and combustion duration increased compared to ND.
文摘Honne oil(tamanu)(H),a non-edible vegetable oil is native for northwards of Northern Marianas islands and the Ryukyu Islands in southern Japan and westward throughout Polynesia.It has remained as an untapped new possible source of alternative fuel that can be used as diesel engine fuel.Literature pertaining to use of vegetable oil in diesel engine with kerosene and dimethyl carbonate(DMC)is scarce.The present research is aimed to investigate experimentally the performance,exhaust emission and combustion characteristics of a direct injection(DI)diesel engine,typically used in agricultural sector,over the entire load range,when fuelled with neat diesel(ND)and blends of diesel fuel(D)/DMC/H/kerosene(K).DMC/D/H/K blends have a potential to improve the performance and emissions and to be an alternative to ND.Experiments have been conducted when fuelled with H20(20%H+80%D),HK(20%H+40%K+40%D)and HKD5(20%H+40%K+35D+5%DMC)to HKD15 in steps of 5%DMC keeping H and K percentages constant.The emissions(CO,HC and smoke density(SD))of fuel blend HKD15 are found to be lowest,with SD dropping significantly.The NOx level is slightly higher with HKD5 to HKD15 as compared to ND.The brake thermal efficiency of HKD5 to HKD15 is same and it is higher than that of ND.There is a good trade off between NOx and SD.Peak cylinder pressure and premixed combustion phase increases as DMC content increase.