By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware ...By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.展开更多
A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was...In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NOx and soot emission control with exhaust gas recirculation (EGR) of turbocharged diesel engine under transient operations, on this simulation platform, a transient EGR valve control strategy was proposed, which adjusted the EGR valve in adjacent level based on the feedback of its opening according soot control limit under transient operations. Simulation and experimental results prove that the transient emission optimization effect of this control strategy is obvious. On the one hand, compared with the previous control strategy, which closed the EGR valve during the whole transient operations, soot emission is slightly increased by 9.5%, but it is still 9% lower than the control limit. On the other hand, compared with the previous control strategy, NOx transient emission is reduced by 44%.展开更多
The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel gener...The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel generating set. Suppose that it is hard to get a control-oriented governor mathematical model when the general approaches, the analytical approach or the experimental approach, are applied, and that an open-loop step response of the diesel engine and its system is available by means of computer simulation, the critical three parameters of a governor mathematical model, the proportional gain K_p, integral time constant K_i, and derivative time constant K_d, can be determined by use of PID tuning method which are widely applied in industrial process control. This paper discussed the train of thought of the approach, precondition, procedure, several modifications of the classical PID model, and some points for attention. A couple of case studies were given to demonstrate the effectiveness of this approach.展开更多
文摘By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
基金This work was supported by the National Basic Research Program of China (No. 2013CB228402) and the National Natural Science Foundation of China (Grant No. 50976046).
文摘In order to alleviate the pressure of experi- mental research of turbocharged diesel engine under transient operations, a whole process simulation platform for turbocharged diesel engine under transient operations was established based on the multi-software coupling technologies of Matlab/Simulink, GT-Power, STAR-CD and artificial neural network. Aimed at the contradiction of NOx and soot emission control with exhaust gas recirculation (EGR) of turbocharged diesel engine under transient operations, on this simulation platform, a transient EGR valve control strategy was proposed, which adjusted the EGR valve in adjacent level based on the feedback of its opening according soot control limit under transient operations. Simulation and experimental results prove that the transient emission optimization effect of this control strategy is obvious. On the one hand, compared with the previous control strategy, which closed the EGR valve during the whole transient operations, soot emission is slightly increased by 9.5%, but it is still 9% lower than the control limit. On the other hand, compared with the previous control strategy, NOx transient emission is reduced by 44%.
文摘The paper introduced a special approach for diesel’s all-speed-governor modeling, which, in some cases, could solve the knotty problem frequently met in computer simulation of diesel propulsion system or diesel generating set. Suppose that it is hard to get a control-oriented governor mathematical model when the general approaches, the analytical approach or the experimental approach, are applied, and that an open-loop step response of the diesel engine and its system is available by means of computer simulation, the critical three parameters of a governor mathematical model, the proportional gain K_p, integral time constant K_i, and derivative time constant K_d, can be determined by use of PID tuning method which are widely applied in industrial process control. This paper discussed the train of thought of the approach, precondition, procedure, several modifications of the classical PID model, and some points for attention. A couple of case studies were given to demonstrate the effectiveness of this approach.