期刊文献+
共找到219篇文章
< 1 2 11 >
每页显示 20 50 100
A CLASS OF COMPACT UPWIND TVD DIFFERENCE SCHEMES 被引量:1
1
作者 涂国华 袁湘江 +1 位作者 夏治强 呼振 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第6期765-772,共8页
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can e... A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities. 展开更多
关键词 high-order difference schemes compact schemes TVD schemes shock- vortex shock-boundary
下载PDF
Symplectic-like Difference Schemes for Generalized Hamiltonian Systems
2
作者 赵颖 王斌 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第4期719-726,共8页
The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical vi... The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical viewpoints, we summarize a general method of constructing symplectic-like difference schemes of these kinds of systems. This study provides a new algorithm for the application of the symplectic geometry method in numerical solutions of general evolution equations. 展开更多
关键词 infinite-dimensional Hamiltonian systems generalized Hamiltonian systems symplectic-like difference schemes Poisson brackets
下载PDF
A CLASS OF VARIATIONAL DIFFERENCE SCHEMES FOR A SINGULAR PERTURBATION PROBLEM
3
作者 林平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第4期353-359,共7页
In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element me... In this paper, a singularly perturbed boundary value problem for second order self-adjoint ordinary differential equation is discussed. A class of variational difference schemes is constructed by the finite element method. Uniform convergence about small parameter is proved under a weaker smooth condition with respect to the coefficients of the equation. The schemes studied in refs. [1], [3], [4] and [51 belong to the cllass. 展开更多
关键词 A CLASS OF VARIATIONAL difference schemes FOR A SINGULAR PERTURBATION PROBLEM
下载PDF
THE UNIFORMLY CONVERGENT DIFFERENCE SCHEMES FOR A SINGULAR PERTURBATION PROBLEM OF A SELFADJOINT ORDINARY DIFFERENTIAL EQUATION
4
作者 林鹏程 郭雯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第1期35-44,共10页
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t... In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results. 展开更多
关键词 THE UNIFORMLY CONVERGENT difference schemes FOR A SINGULAR PERTURBATION PROBLEM OF A SELFADJOINT ORDINARY DIFFERENTIAL EQUATION
下载PDF
Numerical Analysis of Upwind Difference Schemes for Two-Dimensional First-Order Hyperbolic Equations with Variable Coefficients
5
作者 Yanmeng Sun Qing Yang 《Engineering(科研)》 2021年第6期306-329,共24页
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv... In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis. 展开更多
关键词 Two-Dimensional First-Order Hyperbolic Equation Variable Coefficients Upwind difference schemes Fourier Method Stability and Error Estimation
下载PDF
Computational Stability of the Explicit Difference Schemes of the Forced Dissipative Nonlinear Evolution Equations 被引量:1
6
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第3期413-417,共5页
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ... The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001). 展开更多
关键词 Computational quasi-stability Computational stability Forced dissipative nonlinear evolution equation Explicit difference scheme
下载PDF
A CLASS OF TWO-LEVEL EXPLICIT DIFFERENCE SCHEMES FOR SOLVING THREE DIMENSIONAL HEAT CONDUCTION EQUATION 被引量:1
7
作者 曾文平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第9期1071-1078,共8页
A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat... A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results. 展开更多
关键词 three-dimensional heat conduction equation explicit difference scheme truncation error stability condition
下载PDF
Construction of Explicit Quasi-complete Square Conservative Difference Schemes of Forced Dissipative Nonlinear Evolution Equations 被引量:1
8
作者 林万涛 季仲贞 王斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期604-612,共2页
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos... Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated. 展开更多
关键词 Forced dissipative nonlinear evolution equation Explicit quasi-complete square conservative difference scheme Computational stability
下载PDF
A Class of High Accuracy Explicit Difference Schemes for Solving the Heat-conduction Equation of High-dimension 被引量:1
9
作者 CHEN Zhen-zhong MA Xiao-xia 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第2期236-243,共8页
In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability c... In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis. 展开更多
关键词 heat-conduction equation explicit difference scheme truncation error conditional stability
下载PDF
Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
10
作者 Daosheng XU Dehui CHEN Kaixin WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期615-626,共12页
Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, th... Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh. 展开更多
关键词 high-order difference scheme DISPERSION UNIFORM ORTHOGONAL computational efficiency
下载PDF
THE STABILITY OF DIFFERENCE SCHEMES OF A HIGHER DIMENSIONAL PARABOLIC EQUATION
11
作者 孙其仁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第12期1209-1215,共7页
This paper proposes a new method to improve the stability condition of difference scheme of a parabolic equation. Necessary and sufficient conditions of the stability of this new method are given and proved. Some nume... This paper proposes a new method to improve the stability condition of difference scheme of a parabolic equation. Necessary and sufficient conditions of the stability of this new method are given and proved. Some numerical examples show that this method has some calculation advantages. 展开更多
关键词 stability condition parabolic equation difference scheme
下载PDF
Two Energy-Preserving Compact Finite Difference Schemes for the Nonlinear Fourth-Order Wave Equation
12
作者 Xiaoyi Liu Tingchun Wang +1 位作者 Shilong Jin Qiaoqiao Xu 《Communications on Applied Mathematics and Computation》 2022年第4期1509-1530,共22页
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from... In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties. 展开更多
关键词 Nonlinear fourth-order wave equation Compact finite difference scheme Error estimate Energy conservation Iterative algorithm
下载PDF
Conservative Three-Level Linearized Finite Difference Schemes for the Fisher Equation and Its Maximum Error Estimates
13
作者 Guang-hua Gao Biao Ge Zhi-Zhong Sun 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第3期634-667,共34页
A three-level linearized difference scheme for solving the Fisher equation is firstly proposed in this work.It has the good property of discrete conservative energy.By the discrete energy analysis and mathematical ind... A three-level linearized difference scheme for solving the Fisher equation is firstly proposed in this work.It has the good property of discrete conservative energy.By the discrete energy analysis and mathematical induction method,it is proved to be uniquely solvable and unconditionally convergent with the secondorder accuracy in both time and space.Then another three-level linearized compact difference scheme is derived along with its discrete energy conservation law,unique solvability and unconditional convergence of order two in time and four in space.The resultant schemes preserve the maximum bound principle.The analysis techniques for convergence used in this paper also work for the Euler scheme,the Crank-Nicolson scheme and others.Numerical experiments are carried out to verify the computational efficiency,conservative law and the maximum bound principle of the proposed difference schemes. 展开更多
关键词 Fisher equation linearized difference scheme SOLVABILITY convergence CONSERVATION
原文传递
A Family of High_order Accuracy Explicit Difference Schemes for Solving 2-D Parabolic Partial Differential Equation 被引量:4
14
作者 任宗修 陈贞忠 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第3期57-61,共5页
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx... A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4). 展开更多
关键词 D parabolic P.D.E high_order accuracy explic it difference scheme
下载PDF
DIFFERENCE SCHEMES WITH NONUNIFORM MESHES FOR NONLINEAR PARABOLIC SYSTEM 被引量:12
15
作者 Y.L. Zhou(Laboratory of Computational Physics, Centre for Nonlinear Studies, Institute of AppliedPhysics and Computational Mathematics, Beijing, China) 《Journal of Computational Mathematics》 SCIE CSCD 1996年第4期319-335,共17页
The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estemates of the discrete vector solutions for the general dif... The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estemates of the discrete vector solutions for the general difference schemes with unequal meshsteps are established by the fixed point technique. The absolute and relative convergence of the discrete vector solution are justified by a series of a priori estimates. The analysis of mentioned problems are based on the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem of the nonlinear parabolic system. 展开更多
关键词 MATH QT difference schemes WITH NONUNIFORM MESHES FOR NONLINEAR PARABOLIC SYSTEM
原文传递
HIGH RESOLUTION POSITIVITY-PRESERVING DIFFERENCE SCHEMES FOR TWO DIMENSIONAL EULER EQUATIONS
16
作者 赵宁 张虎 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期163-168,共6页
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi... A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful. 展开更多
关键词 Euler equation Boltzmann equation finite difference scheme positivity preserving
下载PDF
CONVERGENCE RATES FOR DIFFERENCE SCHEMES FOR POLYHEDRAL NONLINEAR PARABOLIC EQUATIONS
17
作者 Adam M.Oberman 《Journal of Computational Mathematics》 SCIE CSCD 2010年第4期474-488,共15页
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well appr... We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included. 展开更多
关键词 Error estimates Convergence rate Viscosity solutions Finite difference schemes
原文传递
CONSTRUCTION OF VOLUME-PRESERVING DIFFERENCE SCHEMES FOR SOURCE-FREE SYSTEMS VIA GENERETING FUNCTIONS
18
《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期265-272,共8页
关键词 VIA CONSTRUCTION OF VOLUME-PRESERVING difference schemes FOR SOURCE-FREE SYSTEMS VIA GENERETING FUNCTIONS
原文传递
Combinations of nonstandard finite difference schemes and composition methods with complex time steps for population models
19
作者 Cuicui Liao Xiaohua Ding Jiuzhen Liang 《International Journal of Biomathematics》 2016年第4期1-14,共14页
We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive... We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive numerical solutions that satisfy the conservation law, which is a key property for biological population models. The accuracy is improved by using the composition methods with complex time steps. Numerical tests on the plankton nutrient model and whooping cough model are presented to show the efficiency and advantage of the proposed numerical method. 展开更多
关键词 Nonstandard finite difference schemes composition methods with complextime steps population models positive numerical solutions conservation laws.
原文传递
COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEMES FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBERS 被引量:10
20
作者 Yiping Fu 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第1期98-111,共14页
In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive an... In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the O(h^4) term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions. 展开更多
关键词 Helmholtz equation Compact difference scheme FFT algorithm Convergence.
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部