In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., ...In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.展开更多
The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient co...The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.展开更多
Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two o...Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.展开更多
In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results c...In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].展开更多
In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theo...In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.展开更多
For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain li...For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.展开更多
New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous differ...New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.展开更多
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.
In this paper, we obtain a necessary and sufficient condition for the asymptotical stability of the zero solution to the third order delay difference equations.
In this paper, we establish necessary and sufficient conditions for the zero solution to a class of higher order delay linear difference equations to be asymptotically stable, which are easy to be verified and to be a...In this paper, we establish necessary and sufficient conditions for the zero solution to a class of higher order delay linear difference equations to be asymptotically stable, which are easy to be verified and to be applied.展开更多
In this paper, we establish a criterion of unformly asymptotic stability for finite delay difference systems in terms of two measures by employing Lyapunov functionals method.
The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the conditio...The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.展开更多
Consider the second Order nonlinear neutral difference equation for n≥n0 The sufficient conditions are obtained for the oscillatory and asymptotic behavior of the solutions of this equation.
A class of higher order neutral difference equations is considered and some sufficient conditions are obtained for all solutions to oscillate or tend to zero.
For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the nume...For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented.展开更多
This paper is concerned with the oscillatory (and nonoscillatory) behavior of solutions of second oder quasilinear difference equations of the type Some necessary and sufficient conditions are given for the equation t...This paper is concerned with the oscillatory (and nonoscillatory) behavior of solutions of second oder quasilinear difference equations of the type Some necessary and sufficient conditions are given for the equation to admit oscillatory and nonoscillatory solutions with special asymptotic properties. These results generalize and improve some known results.展开更多
The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired ord...The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired order. Thus, the stability problems of scalar autonomous difference equations are thoroughly solved. The proofs of the obtained criteria are mathematically rigorous and complete. Also, several exam pies are given to illustrate the obtained results.展开更多
基金Supported by the National Natural Science Foundation of China(1 0 0 71 0 2 2 ) Mathematical TianyuanFoundation of China(TY1 0 0 2 6 0 0 2 - 0 1 - 0 5 - 0 3 ) Shanghai Priority Academic Discipline Foundation
文摘In this paper,a sufficient condition for the global asymptotic stability of the solutions of the following nonlinear delay difference equation is obtained, xn+ 1=xn+xn- 1xn- 2 +a xnxn- 1+xn- 2 +a, n =0 ,1 ,..., where a∈ [0 ,∞ ) and the initial values x- 2 ,x- 1,x0 ∈ (0 ,∞ ) .As a special case,a conjecture by Ladas is confirmed.
基金Supported by Natural Science Foundaton of Henan Providence(0111051200)
文摘The difference equation △xn+ pnxn-k = f(n,xn-1,...,xn-1m), n = 0, 1,2,.. is considered, where {pn} is a sequence of nonnegative real numbers, m ∈ {1, 2, ,... }, k,l1,..., lm ∈ {0, 1, 2,,... }. Some sufficient conditions for the global asymptotic stability of zero solution of the equation are obtained.
文摘Some sufficient, conditions for boundedness and persistence and global asymptotic stability of solutions for a class of delay difference equations with higher order are obtained, which partly solve G. Ladas' two open problems and extend some known results.
基金the National Natural Science Foundation of China(61473340)the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province+1 种基金the National Natural Science Foundation of Zhejiang Province(LQ13A010019)the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
文摘In this paper we prove a global attractivity result for the unique positive equilibrium point of a difference equation,which improves and generalizes some known ones in the existing literature.Especially,our results completely solve an open problem and some conjectures proposed in[1,2,3,4].
文摘In this paper, the authors establish some theorems that can ascertain the zero solutions of systemsx(n+1)=f(n,x n)(1)are uniformly stable,asymptotically stable or uniformly asymptotically stable. In the obtained theorems, ΔV is not required to be always negative, where ΔV(n,x n)≡V(n+1,x(n+1)) -V(n,x(n))=V(n+1,f(n,x n))-V(n,x(n)), especially, in Theorem 1, ΔV may be even positive, which greatly improve the known results and are more convenient to use.
文摘For functional difference equations with unbounded delay,we characterized the existence of totally stable and asymptotically almost periodic solution by using stability properties of a bounded solution in a certain limiting equation.
文摘New theorems of asymptotical stability and uniformly asymptotical stability for nonautonomous difference equations are given in this paper. The classical Liapunov asymptotical stability theorem of nonautonomous difference equations relies on the existence of a positive definite Liapunov function that has an indefinitely small upper bound and whose variation along a given nonautonomous difference equations is negative definite. In this paper, we consider the case that the Liapunov function is only positive definite and its variation is semi-negative definite. At these weaker conditions, we put forward a new asymptotical stability theorem of nonautonomous difference equations by adding to extra conditions on the variation. After that, in addition to the hypotheses of our new asymptotical stability theorem, we obtain a new uniformly asymptotical stability theorem of nonautonomous difference equations provided that the Liapunov function has an indefinitely small upper bound. Example is given to verify our results in the last.
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
基金Project supported by the National Natural Science Foundation of China (No. 19831030).
文摘For the infinite delay difference equations of the general form, two new uniform asymptotic stability criteria are established in terms of the discrete Liapunov functionals.
基金Supported by Natural Science Foundation of Heilongjiang Province under Grant No.A0207Foundation of Heilongjiang University for Youth Teacher under Grant No.QL200501
文摘In this paper, we obtain a necessary and sufficient condition for the asymptotical stability of the zero solution to the third order delay difference equations.
文摘In this paper, we establish necessary and sufficient conditions for the zero solution to a class of higher order delay linear difference equations to be asymptotically stable, which are easy to be verified and to be applied.
基金This work is supported by Mathematics Tianyuan Fund (No.A0324624),NNSF of China (No.10371040),Shanghai Priority Academic Discipline.
文摘In this paper, we establish a criterion of unformly asymptotic stability for finite delay difference systems in terms of two measures by employing Lyapunov functionals method.
文摘The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.
文摘Consider the second Order nonlinear neutral difference equation for n≥n0 The sufficient conditions are obtained for the oscillatory and asymptotic behavior of the solutions of this equation.
文摘A class of higher order neutral difference equations is considered and some sufficient conditions are obtained for all solutions to oscillate or tend to zero.
文摘For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented.
基金The Science Foundation (00C029) of Hunan Educational Committee.
文摘This paper is concerned with the oscillatory (and nonoscillatory) behavior of solutions of second oder quasilinear difference equations of the type Some necessary and sufficient conditions are given for the equation to admit oscillatory and nonoscillatory solutions with special asymptotic properties. These results generalize and improve some known results.
文摘The general criteria of stability for equihbrium points of scalar autonomous difference equations are given, wich cover all the cases as long as the right-hand function has continuous derivatives up to the desired order. Thus, the stability problems of scalar autonomous difference equations are thoroughly solved. The proofs of the obtained criteria are mathematically rigorous and complete. Also, several exam pies are given to illustrate the obtained results.