期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical study on the evolution of the shock-accelerated SF_6 interface:Influence of the interface shape 被引量:4
1
作者 FAN MeiRu ZHAI ZhiGang +3 位作者 SI Ting LUO XiSheng ZOU LiYong TAN DuoWang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第2期284-296,共13页
The early phases of the shock interaction process on two-dimensional interfaces with different shapes are numerically investigated in this study,which are closely related to the shock refraction and reflection,vortici... The early phases of the shock interaction process on two-dimensional interfaces with different shapes are numerically investigated in this study,which are closely related to the shock refraction and reflection,vorticity production and transport.The numerical method employs an adaptive unstructured quadrilateral mesh,which can capture the wave pattern and interface evolution very well.Simulations are carried out under the conditions of an incident shock Mach number of 1.2 and the light/heavy (air/SF 6) interface.Five different shapes are considered in the simulations:rectangle,ellipse,diamond and two kinds of triangle.The results show that the interfacial shapes can influence the wave patterns particularly on the shape and evolution of refracted shock waves.The generation and the distribution of vorticity on the interfaces with five different shapes also have dissimilarities.The circulation deposition on five interfaces is quantitatively investigated and compared with theoretical model.A good agreement is found between the numerical results and the predictions by the theoretical model.Some characteristic scales of the interface are tracked.Under the influence of nonlinear-acoustic effect and vorticity effect,the interfaces present different evolution modes. 展开更多
关键词 binaries: interfacial instability planar shock different shapes
原文传递
The Effect of Particle Shape on the Structure and Rheological Properties of Carbon-based Particle Suspensions 被引量:4
2
作者 Ran Niu Jiang Gong +2 位作者 许东华 Tao Tang 孙昭艳 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2015年第11期1550-1561,共12页
The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(... The structure and rheological properties of carbon-based particle suspensions, i.e., carbon black(CB), multi-wall carbon nanotube(MWNT), graphene and hollow carbon sphere(HCS) suspended in polydimethylsiloxane(PDMS), are investigated. In order to study the effect of particle shape on the structure and rheological properties of suspensions, the content of surface oxygen-containing functional groups of carbon-based particles is controlled to be similar. Original spherical-like CB(fractal filler), rod-like MWNT and sheet-like graphene form large agglomerates in PDMS, while spherical HCS particles disperse relatively well in PDMS. The dispersion state of carbon-based particles affects the critical concentration of forming a rheological percolation network. Under weak shear, negative normal stress differences(ΔN) are observed in CB, MWNT and graphene suspensions, while ΔN is nearly zero for HCS suspensions. It is concluded that the vorticity alignment of CB, MWNT and graphene agglomerates under shear results in the negative ΔN. However, no obvious structural change is observed in HCS suspension under weak shear, and accordingly, the ΔN is almost zero. 展开更多
关键词 Particle shape Surface chemistry Negative normal stress differences Structure Interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部