Estimation of NEE of Grasslands ecosystems becomes mandatory as these grasslands with their wide spread (almost 40% of land of the earth) and high plant diversity play a major role in global carbon balances and NEE at...Estimation of NEE of Grasslands ecosystems becomes mandatory as these grasslands with their wide spread (almost 40% of land of the earth) and high plant diversity play a major role in global carbon balances and NEE at both local and global scale. The present study has been focused on understanding the role of different plant species responsible for variation in NEE of the Banni Grasslands of India. These grasslands form a belt of arid grassland having low growing forbs, graminoids and scattered tree cover. Due to its wide spread and inaccessibility of Banni, this study utilized spatial approach for evaluating carbon emissions and NEE. Landsat data was utilized for vegetation type classification and SMAP data for extraction of NEE values proved their potential for categorising vegetation type and generating NEE values precisely. Three major plant types were identified from the study area <i>viz.</i>, Grasslands, Land with <i>Acacia</i> and Land with <i>Prosopis</i>. Grasses were dominant covering 77% and the rest of the area was occupied by the other two classes, <i>i.e. Acacia</i> and <i>Prosopis</i>. The NEE values were higher for the grasses when compared to the other two plant species proving to be the active sinks when compared to other plants. The differential contribution of NEE by species has been depicted in the present work.展开更多
The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetatio...The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.展开更多
The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the...The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.展开更多
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime...Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.展开更多
The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ...The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.展开更多
There is a crucial need in the study of global change to understand how terrestrial ecosystems respond to the climate system.It has been demonstrated by many researches that Normalized Different Vegetation Index(NDVI)...There is a crucial need in the study of global change to understand how terrestrial ecosystems respond to the climate system.It has been demonstrated by many researches that Normalized Different Vegetation Index(NDVI)time series from remotely sensed data,which provide effective information of vegetation conditions on a large scale with highly temporal resolution,have a good relation with meteorological factors.However,few of these studies have taken the cumulative property of NDVI time series into account.In this study,NDVI difference series were proposed to replace the original NDVI time series with NDVI difference series to reappraise the relationship between NDVI and meteorological factors.As a proxy of the vegetation growing process,NDVI difference represents net primary productivity of vegetation at a certain time interval under an environment controlled by certain climatic conditions and other factors.This data replacement is helpful to eliminate the cumulative effect that exist in original NDVI time series,and thus is more appropriate to understand how climate system affects vegetation growth in a short time scale.By using the correlation analysis method,we studied the relationship between NOAA/AVHRR ten-day NDVI difference series and corresponding meteorological data from 1983 to 1999 from 11 meteorological stations located in the Xilingole steppe in Inner Mongolia.The results show that:(1)meteorological factors are found to be more significantly correlation with NDVI difference at the biomass-rising phase than that at the falling phase;(2)the relationship between NDVI difference and climate variables varies with vegetation types and vegetation communities.In a typical steppe dominated by Leymus chinensis,temperature has higher correlation with NDVI difference than precipitation does,and in a typical steppe dominated by Stipa krylovii,the correlation between temperature and NDVI difference is lower than that between precipitation and NDVI difference.In a typical steppe dominated by Stipa grandis,there is no significant difference between the two correlations.Precipitation is the key factor influencing vegetation growth in a desert steppe,and temperature has poor correlation with NDVI dif-ference;(3)the response of NDVI difference to precipitation is fast and almost simultaneous both in a typical steppe and desert steppe,however,mean temperature exhibits a time-lag effect especially in the desert steppe and some typical steppe dominated by Stipa krylovii;(4)the relationship between NDVI difference and temperature is becoming stronger with global warming.展开更多
Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which...Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.展开更多
The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecolo...The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms.展开更多
Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation ...Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.展开更多
The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly...The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.展开更多
Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the eco...Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the ecotone in the west of the Northeast China Plain. The yearly and monthly maximal values,anomalies and change rates of NDVI and NDWI were calculated to reveal the interannual and seasonal changes in vegetation cover and vegetation water content. Linear regression method was adopted to characterize the trends in vegetation change. The yearly maximal NDVI decreased from 0.41 in 1998 to 0.37 in 2007,implying the decreasing trend of vegetation activity. There was a significant decrease of maximal NDVI in spring and summer over the study period,while an increase trend was observed in autumn. The vegetation-improved regions and vegetation-degraded regions occupied 17.03% and 20.30% of the study area,respectively. The maximal NDWI over growing season dropped by 0.027 in 1998–2007,and about 15.15% of the study area showed a decreasing trend of water content. Vegetation water stress in autumn was better than that in spring. Vegetation cover and water content variations were sensitive to annual precipitation,autumn precipitation and summer temperature. The vegetation degradation trend in this ecotone might be induced by the warm-drying climate especially continuous spring and summer drought in the recent ten years.展开更多
Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment espec...Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.展开更多
It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in t...It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects.展开更多
Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time ser...Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.展开更多
Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different character...Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.展开更多
With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a ...With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a significant impact on net primary productivity(NPP) and affect the global carbon cycle. Currently, the seasonal response characteristics of NPP to phenological changes in dryland ecosystems are still not well defined. This article calibrated and analyzed the normalized difference vegetation index(NDVI)time series of Advanced Very-High-Resolution Radiometer(AVHRR) data from 1982 to 2015 in the Loess Plateau, China. The spatial and temporal distributions of vegetation phenology and NPP in the Loess Plateau under semihumid and semiarid conditions were investigated. The seasonal variation in the NPP response to vegetation phenology under the climate change was also analyzed. The results showed that, different from the northern forest, there was distinct spatial heterogeneity in the effect of climate change on the dynamic change in vegetation growth in the Loess Plateau: 1) an advance of the start of the growing season(SOS) and a delay of the end of the growing season(EOS) significantly increased the NPP in spring and autumn, respectively, in the humid southeast;2) in the arid northwest, the NPP did not significantly increase in spring and autumn but significantly decreased in summer.展开更多
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref...A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.展开更多
The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned thei...The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.展开更多
文摘Estimation of NEE of Grasslands ecosystems becomes mandatory as these grasslands with their wide spread (almost 40% of land of the earth) and high plant diversity play a major role in global carbon balances and NEE at both local and global scale. The present study has been focused on understanding the role of different plant species responsible for variation in NEE of the Banni Grasslands of India. These grasslands form a belt of arid grassland having low growing forbs, graminoids and scattered tree cover. Due to its wide spread and inaccessibility of Banni, this study utilized spatial approach for evaluating carbon emissions and NEE. Landsat data was utilized for vegetation type classification and SMAP data for extraction of NEE values proved their potential for categorising vegetation type and generating NEE values precisely. Three major plant types were identified from the study area <i>viz.</i>, Grasslands, Land with <i>Acacia</i> and Land with <i>Prosopis</i>. Grasses were dominant covering 77% and the rest of the area was occupied by the other two classes, <i>i.e. Acacia</i> and <i>Prosopis</i>. The NEE values were higher for the grasses when compared to the other two plant species proving to be the active sinks when compared to other plants. The differential contribution of NEE by species has been depicted in the present work.
基金supported by the National Natural Science Foundation of China (42377472, 42174055)the Jiangxi Provincial Social Science "Fourteenth Five-Year Plan" (2024) Fund Project (24GL45)+1 种基金the Research Center of Resource and Environment Economics (20RGL01)the Provincial Finance Project of Jiangxi Academy of Sciences-Young Talent Cultivation Program (2023YSBG50010)
文摘The Three-River Source Region(TRSR)in China holds a vital position and exhibits an irreplaceable strategic importance in ecological preservation at the national level.On the basis of an in-depth study of the vegetation evolution in the TRSR from 2000 to 2022,we conducted a detailed analysis of the feedback mechanism of vegetation growth to climate change and human activity for different vegetation types.During the growing season,the spatiotemporal variations of normalized difference vegetation index(NDVI)for different vegetation types in the TRSR were analyzed using the Moderate Resolution Imaging Spectroradiometer(MODIS)-NDVI data and meteorological data from 2000 to 2022.In addition,the response characteristics of vegetation to temperature,precipitation,and human activity were assessed using trend analysis,partial correlation analysis,and residual analysis.Results indicated that,after in-depth research,from 2000 to 2022,the TRSR's average NDVI during the growing season was 0.3482.The preliminary ranking of the average NDVI for different vegetation types was as follows:shrubland(0.5762)>forest(0.5443)>meadow(0.4219)>highland vegetation(0.2223)>steppe(0.2159).The NDVI during the growing season exhibited a fluctuating growth trend,with an average growth rate of 0.0018/10a(P<0.01).Notably,forests displayed a significant development trend throughout the growing season,possessing the fastest rate of change in NDVI(0.0028/10a).Moreover,the upward trends in NDVI for forests and steppes exhibited extensive spatial distributions,with significant increases accounting for 95.23%and 93.80%,respectively.The sensitivity to precipitation was significantly enhanced in other vegetation types other than highland vegetation.By contrast,steppes,meadows,and highland vegetation demonstrated relatively high vulnerability to temperature fluctuations.A further detailed analysis revealed that climate change had a significant positive impact on the TRSR from 2000 to 2022,particularly in its northwestern areas,accounting for 85.05%of the total area.Meanwhile,human activity played a notable positive role in the southwestern and southeastern areas of the TRSR,covering 62.65%of the total area.Therefore,climate change had a significantly higher impact on NDVI during the growing season in the TRSR than human activity.
基金National Key Research and Development Program on Enhancement of Soil and Water Ecological Security and Guarantee Technology in Desert Oasis Areas(2023YFF130420103)Three North Project of Xinhua Forestry Highland Demonstration Science and Technology Construction Project,the Technology and Demonstration of Near-Natural Modification of Artificial Protective Forest Structures and Enhancement of Soil and Water Conservation Functions in Ecological Protection Belt(2023YFF1305201)+2 种基金Multi-dimensional Coupled Soil-surface-groundwater Hydrological Processes and Vegetation Regulation Mechanism in Loess Area of the National Natural Science Foundation of China(U2243202)Hot Tracking Program of Beijing Forestry University"Planting a Billion Trees"Program and China-Mongolia Cooperation on Desertification in China(2023BLRD04)Research on Ecological Photovoltaic Vegetation Configuration Model and Restoration Technology(AMKJ2023-17).
文摘The Mongolian Plateau in East Asia is one of the largest contingent arid and semi-arid areas of the world.Under the impacts of climate change and human activities,desertification is becoming increasingly severe on the Mongolian Plateau.Understanding the vegetation dynamics in this region can better characterize its ecological changes.In this study,based on Moderate Resolution Imaging Spectroradiometer(MODIS)images,we calculated the kernel normalized difference vegetation index(kNDVI)on the Mongolian Plateau from 2000 to 2023,and analyzed the changes in kNDVI using the Theil-Sen median trend analysis and Mann-Kendall significance test.We further investigated the impact of climate change on kNDVI change using partial correlation analysis and composite correlation analysis,and quantified the effects of climate change and human activities on kNDVI change by residual analysis.The results showed that kNDVI on the Mongolian Plateau was increasing overall,and the vegetation recovery area in the southern region was significantly larger than that in the northern region.About 50.99%of the plateau showed dominant climate-driven effects of temperature,precipitation,and wind speed on kNDVI change.Residual analysis showed that climate change and human activities together contributed to 94.79%of the areas with vegetation improvement.Appropriate human activities promoted the recovery of local vegetation,and climate change inhibited vegetation growth in the northern part of the Mongolian Plateau.This study provides scientific data for understanding the regional ecological environment status and future changes and developing effective ecological protection measures on the Mongolian Plateau.
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金National Natural Science Foundation of China(42230720).
文摘Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.
文摘The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.
基金This work was supported by the National Natural Science Foundation of China(No.G2000018604).
文摘There is a crucial need in the study of global change to understand how terrestrial ecosystems respond to the climate system.It has been demonstrated by many researches that Normalized Different Vegetation Index(NDVI)time series from remotely sensed data,which provide effective information of vegetation conditions on a large scale with highly temporal resolution,have a good relation with meteorological factors.However,few of these studies have taken the cumulative property of NDVI time series into account.In this study,NDVI difference series were proposed to replace the original NDVI time series with NDVI difference series to reappraise the relationship between NDVI and meteorological factors.As a proxy of the vegetation growing process,NDVI difference represents net primary productivity of vegetation at a certain time interval under an environment controlled by certain climatic conditions and other factors.This data replacement is helpful to eliminate the cumulative effect that exist in original NDVI time series,and thus is more appropriate to understand how climate system affects vegetation growth in a short time scale.By using the correlation analysis method,we studied the relationship between NOAA/AVHRR ten-day NDVI difference series and corresponding meteorological data from 1983 to 1999 from 11 meteorological stations located in the Xilingole steppe in Inner Mongolia.The results show that:(1)meteorological factors are found to be more significantly correlation with NDVI difference at the biomass-rising phase than that at the falling phase;(2)the relationship between NDVI difference and climate variables varies with vegetation types and vegetation communities.In a typical steppe dominated by Leymus chinensis,temperature has higher correlation with NDVI difference than precipitation does,and in a typical steppe dominated by Stipa krylovii,the correlation between temperature and NDVI difference is lower than that between precipitation and NDVI difference.In a typical steppe dominated by Stipa grandis,there is no significant difference between the two correlations.Precipitation is the key factor influencing vegetation growth in a desert steppe,and temperature has poor correlation with NDVI dif-ference;(3)the response of NDVI difference to precipitation is fast and almost simultaneous both in a typical steppe and desert steppe,however,mean temperature exhibits a time-lag effect especially in the desert steppe and some typical steppe dominated by Stipa krylovii;(4)the relationship between NDVI difference and temperature is becoming stronger with global warming.
基金funded by the National Natural Science Foundation of China (42101295)the Science and Technology Department of Jiangsu (BK20210657)the Natural Science Foundation of Jiangsu Higher Education Institutions of China (21KJB170003)。
文摘Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.
基金funded by the National Natural Science Foundation of China(52179015,42301024)the Key Technologies Research&Development and Promotion Program of Henan(232102110025)the Cultivation Plan of Innovative Scientific and Technological Team of Water Conservancy Engineering Discipline of North China University of Water Resources and Electric Power(CXTDPY-9).
文摘The effect of global climate change on vegetation growth is variable.Timely and effective monitoring of vegetation drought is crucial for understanding its dynamics and mitigation,and even regional protection of ecological environments.In this study,we constructed a new drought index(i.e.,Vegetation Drought Condition Index(VDCI))based on precipitation,potential evapotranspiration,soil moisture and Normalized Difference Vegetation Index(NDVI)data,to monitor vegetation drought in the nine major river basins(including the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin,Yangtze River Basin,Southeast River Basin,Pearl River Basin,Southwest River Basin and Continental River Basin)in China at 1-month–12-month(T1–T12)time scales.We used the Pearson's correlation coefficients to assess the relationships between the drought indices(the developed VDCI and traditional drought indices including the Standardized Precipitation Evapotranspiration Index(SPEI),Standardized Soil Moisture Index(SSMI)and Self-calibrating Palmer Drought Severity Index(scPDSI))and the NDVI at T1–T12 time scales,and to estimate and compare the lag times of vegetation response to drought among different drought indices.The results showed that precipitation and potential evapotranspiration have positive and major influences on vegetation in the nine major river basins at T1–T6 time scales.Soil moisture shows a lower degree of negative influence on vegetation in different river basins at multiple time scales.Potential evapotranspiration shows a higher degree of positive influence on vegetation,and it acts as the primary influencing factor with higher area proportion at multiple time scales in different river basins.The VDCI has a stronger relationship with the NDVI in the Songhua River and Liaohe River Basin,Haihe River Basin,Yellow River Basin,Huaihe River Basin and Yangtze River Basin at T1–T4 time scales.In general,the VDCI is more sensitive(with shorter lag time of vegetation response to drought)than the traditional drought indices(SPEI,scPDSI and SSMI)in monitoring vegetation drought,and thus it could be applied to monitor short-term vegetation drought.The VDCI developed in the study can reveal the law of unclear mechanisms between vegetation and climate,and can be applied in other fields of vegetation drought monitoring with complex mechanisms.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0903)the National Natural Science Foundation of China (No. 42071017)+1 种基金the science and technology research program of the Chinese Academy of Sciences' Institute of Mountain Hazards and Environment (No.IMHE-ZDRW-03)the Alliance of International Science Organizations (ANSO) provided funding for a master's degree
文摘Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.
基金supported by the foundation from:the program of the National Natural Science Foundation of China(40675037)the key program of the Sichuan Province Youth Science and Technology Fund(05ZQ026-023)the opening project of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences.
文摘The Qinghai-Xizang Plateau, or Tibetan Plateau, is a sensitive region for climate change, where the manifestation of global warming is particularly noticeable. The wide climate variability in this region significantly affects the local land ecosystem and could consequently lead to notable vegetation changes. In this paper, the interannual variations of the plateau vegetation are investigated using a 21-year normalized difference vegetation index (NDVI) dataset to quantify the consequences of climate warming for the regional ecosystem and its interactions. The results show that vegetation coverage is best in the eastern and southern plateau regions and deteriorates toward the west and north. On the whole, vegetation activity demonstrates a gradual enhancement in an oscillatory manner during 1982-2002. The temporal variation also exhibits striking regional differences: an increasing trend is most apparent in the west, south, north and southeast, whereas a decreasing trend is present along the southern plateau boundary and in the central-east region. Covariance analysis between the NDVI and surface temperature/precipitation suggests that vegetation change is closely related to climate change. However, the controlling physical processes vary geographically. In the west and east, vegetation variability is found to be driven predominantly by temperature, with the impact of precipitation being of secondary importance. In the central plateau, however, temperature and precipitation factors are equally important in modulating the interannual vegetation variability.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2009CB426305)National Natural Science Foundation of China (No. 30370267) "Eleventh Five-year" Science and Technology In-novation Platform Foster Program of Northeast Normal University (No. 106111065202)
文摘Multi-temporal series of satellite SPOT-VEGETATION normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data from 1998 to 2007 were used for analyzing vegetation change of the ecotone in the west of the Northeast China Plain. The yearly and monthly maximal values,anomalies and change rates of NDVI and NDWI were calculated to reveal the interannual and seasonal changes in vegetation cover and vegetation water content. Linear regression method was adopted to characterize the trends in vegetation change. The yearly maximal NDVI decreased from 0.41 in 1998 to 0.37 in 2007,implying the decreasing trend of vegetation activity. There was a significant decrease of maximal NDVI in spring and summer over the study period,while an increase trend was observed in autumn. The vegetation-improved regions and vegetation-degraded regions occupied 17.03% and 20.30% of the study area,respectively. The maximal NDWI over growing season dropped by 0.027 in 1998–2007,and about 15.15% of the study area showed a decreasing trend of water content. Vegetation water stress in autumn was better than that in spring. Vegetation cover and water content variations were sensitive to annual precipitation,autumn precipitation and summer temperature. The vegetation degradation trend in this ecotone might be induced by the warm-drying climate especially continuous spring and summer drought in the recent ten years.
基金Under the auspices of National Natural Science Foundation of China(No.41171143,40771064)Program for New Century Excellent Talents in University(No.NCET-07-0398)Fundamental Research Funds for the Central Universities(No.lzu-jbky-2012-k35)
文摘Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.
基金funded by the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1703)the Science and Technology Service Network Initiative of Chinese Academy of Sciences:Ecological Risk Assessment and Protection of the Yangtze River Economic Belt(KFJ-STS-ZDTP)
文摘It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects.
基金supported by the National Natural Science Foundation of China (41671418 and 41371326)the Science and Technology Facilities Council of UK-Newton Agritech Programme (Sentinels of Wheat)the Fundamental Research Funds for the Central Universities, China (2019TC117)
文摘Soil temperatures at different depths down the soil profile are important agro-meteorological indicators which are necessary for ecological modeling and precision agricultural activities. In this paper, using time series of soil temperature(ST) measured at different depths(0, 5, 10, 20, and 40 cm) at agro-meteorological stations in northern China as reference data, ST was estimated from land surface temperature(LST) and normalized difference vegetation index(NDVI) derived from AQUA/TERRA MODIS data, and solar declination(Ds) in univariate and multivariate linear regression models. Results showed that when daytime LST is used as predictor, the coefficient of determination(R^2) values decrease from the 0 cm layer to the 40 cm layer. Additionally, with the use of nighttime LST as predictor, the R^2 values were relatively higher at 5, 10 and 15 cm depths than those at 0, 20 and 40 cm depths. It is further observed that the multiple linear regression models for soil temperature estimation outperform the univariate linear regression models based on the root mean squared errors(RMSEs) and R^2. These results have demonstrated the potential of MODIS data in tandem with the Ds parameter for soil temperature estimation at the upper layers of the soil profile where plant roots grow in. To the best of our knowledge, this is the first attempt at the synergistic use of LST, NDVI and Ds for soil temperature estimation at different depths of the upper layers of the soil profile, representing a significant contribution to soil remote sensing.
基金Under the auspices of National Key Research Program of China(No.2016YFC0502300,2016YFC0502102,2014BAB03B00)National Key Research and Development Program(No.2014BAB03B02)+3 种基金Agricultural Science and Technology Key Project of Guizhou Province of China(No.2014-3039)Science and Technology Plan Projects of Guiyang Municipal Bureau of Science and Technology of China(No.2012-205)Science and Technology Plan of Guizhou Province of China(No.2012-6015)Guangxi Natural Science Foundation of China(No.2014GXNSFBA118221)
文摘Guizhou Province is an important karst area in the world and a fragile ecological area in China. Ecological risk assessment is very necessary to be conducted in this region. This study investigates different characteristics of the spatial-temporal changes of vegetation cover in Guizhou Province of Southern China using the data set of SPOT VEGETATION(1999–2015) at spatial resolution of 1-km and temporal resolution of 10-day. The coefficient of variation, the Theil-Sen median trend analysis, and the Mann-Kendall test are used to investigate the spatial-temporal change of vegetation cover and its future trend. Results show that: 1) the spatial distribution pattern of vegetation cover in Guizhou Plateau is high in the east whereas low in the west. The average annual normalized difference vegetation index(NDVI) from west to east is higher than that from south to north. 2) Average annual NDVI improved obviously in the past 17 years. The growth rate of average annual NDVI is 0.028/10 yr, which is slower than that of vegetation in the country(0.048/10 yr) from 1998 to 2007. Average annual NDVI in karst area is lower than that in non-karst area. However, the growing rate of average annual NDVI in karst area(0.030/10 yr) is faster than that in non-karst area(0.023/10 yr), indicating that vegetation coverage increases more rapidly in karst area. 3) Vegetation coverage in the study area is stable overall, but fluctuates in the local scales. 4) Vegetation coverage presents a continuous increasing trend. The Hurst exponent of NDVI in different vegetation types has an obvious threshold in various elevations. 5) The proportion of vegetation cover with sustainable increase is higher than that of vegetation cover with sustainable decrease. The improvement in vegetation cover may expand to most parts of the study area.
基金Under the auspices of MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.20YJC840027)Natural Science Basic Research Program of Shaanxi,China(No.2021JQ-771,No.2021JQ-768)Soft Science Project of Xi’an Science and Technology Bureau,Shaanxi Province(No.2021-0013)。
文摘With global warming, the great changes in the patterns of plant growth have occurred. The conditions in early spring and late autumn have changed the process of vegetation photosynthesis, which are expected to have a significant impact on net primary productivity(NPP) and affect the global carbon cycle. Currently, the seasonal response characteristics of NPP to phenological changes in dryland ecosystems are still not well defined. This article calibrated and analyzed the normalized difference vegetation index(NDVI)time series of Advanced Very-High-Resolution Radiometer(AVHRR) data from 1982 to 2015 in the Loess Plateau, China. The spatial and temporal distributions of vegetation phenology and NPP in the Loess Plateau under semihumid and semiarid conditions were investigated. The seasonal variation in the NPP response to vegetation phenology under the climate change was also analyzed. The results showed that, different from the northern forest, there was distinct spatial heterogeneity in the effect of climate change on the dynamic change in vegetation growth in the Loess Plateau: 1) an advance of the start of the growing season(SOS) and a delay of the end of the growing season(EOS) significantly increased the NPP in spring and autumn, respectively, in the humid southeast;2) in the arid northwest, the NPP did not significantly increase in spring and autumn but significantly decreased in summer.
基金supported by the Rural Development Administration(PJ013821032020),Republic of Korea。
文摘A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.
基金Under the auspices of the National Key R&D Program of China(No.2017YFC0504701)Science and Technology Service Network Initiative Project of Chinese Academy of Sciences(No.KFJ-STS-ZDTP-036)+1 种基金Fundamental Research Funds for the Central Universities(No.GK201703053)China Postdoctoral Science Foundation(No.2017M623114)
文摘The Chinese government adopted six ecological restoration programs to improve its natural environments. Although these programs have proven successful in improving local environments, some studies have questioned their performance when regions suffer from drought. Whether we should consider the effects of drought on vegetation change in assessments of the benefits of ecological restoration programs is unclear. Therefore, taking the Grain for Green Program(GGP) region as a study area, we estimated vegetation growth in the region from 2000–2010 to clarify the trends in vegetation and their driving forces. Results showed that: 1) vegetation growth increased in the GGP region during 2000–2010, with 59.4% of the area showing an increase in the Normalized Difference Vegetation Index(NDVI). This confirmed the benefits of the ecological restoration program. 2) Drought can affect the vegetation change trend, but human activity plays a significant role in altering vegetation growth, and the slight downward trend in the NDVI was not consistent with the severity of the drought. Positive human activity led to increased NDVI in 89.13% of areas. Of these, 22.52% suffered drought, but positive human activity offset the damage in part. 3) Results of this research suggest that appropriate human activity can maximize the benefits of ecological restoration programs and minimize the effects of extreme weather. We therefore recommend incorporating eco-risk assessment and scientific management mechanisms in the design and management of ecosystem restoration programs.