期刊文献+
共找到3,660篇文章
< 1 2 183 >
每页显示 20 50 100
Furnace Temperature Curve Optimization Model Based on Differential Evolution Algorithm
1
作者 Yiming Cheng 《Journal of Electronic Research and Application》 2024年第4期64-80,共17页
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ... When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed. 展开更多
关键词 Furnace temperature curve Difference equations Differential evolution algorithms TOPSIS methods
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
2
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
3
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Novel Adaptive Memory Event-Triggered-Based Fuzzy Robust Control for Nonlinear Networked Systems via the Differential Evolution Algorithm
4
作者 Wei Qian Yanmin Wu Bo Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1836-1848,共13页
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide... This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources. 展开更多
关键词 Adaptive memory event-triggered(AMET) differential evolution algorithm fuzzy optimization robust control interval type-2(IT2)fuzzy technique.
下载PDF
Okumura Hata Propagation Model Optimization in 400 MHz Band Based on Differential Evolution Algorithm: Application to the City of Bertoua
5
作者 Eric Michel Deussom Djomadji Ivan Basile Kabiena +2 位作者 Joel Thibaut Mandengue Felix Watching Emmanuel Tonye 《Journal of Computer and Communications》 2023年第5期52-69,共18页
Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. Th... Propagation models are the foundation for radio planning in mobile networks. They are widely used during feasibility studies and initial network deployment, or during network extensions, particularly in new cities. They can be used to calculate the power of the signal received by a mobile terminal, evaluate the coverage radius, and calculate the number of cells required to cover a given area. This paper takes into account the standard k factors model and then uses the differential evolution algorithm to set up a propagation model adapted to the physical environment of the Cameroonian cities of Bertoua. Drive tests were made on the LTE TDD network in the city of Bertoua. Differential evolution algorithm is used as the optimization algorithm to deduct a propagation model which fits the environment of the considered town. The calculation of the root mean square error between the actual data from the drive tests and the prediction data from the implemented model allows the validation of the obtained results. A comparative study made between the RMSE value obtained by the new model and those obtained by the Okumura Hata and free space models, allowed us to conclude that the new model obtained is better and more representative of our local environment than the Okumura Hata currently used. The implementation shows that Differential evolution can perform well and solve this kind of optimization problem;the newly obtained models can be used for radio planning in the city of Bertoua in Cameroon. 展开更多
关键词 Radio Measurements Root Mean Square Error Differential evolution algorithm
下载PDF
基于ADE优化的IPMSM全速域无传感器控制 被引量:1
6
作者 姚国仲 郝剑 +3 位作者 王贵勇 李涛 董文龙 詹益嘉 《传感器与微系统》 CSCD 北大核心 2024年第5期105-108,112,共5页
为了实现内置式永磁同步电机(IPMSM)全速域的无传感器控制和切换速域的平滑过渡,提出了一种基于自适应差分进化(ADE)算法优化的复合控制方法。分别在零低速域、中高速域采用旋转高频电压注入法和滑模观测器法来对电机转速和转子位置进... 为了实现内置式永磁同步电机(IPMSM)全速域的无传感器控制和切换速域的平滑过渡,提出了一种基于自适应差分进化(ADE)算法优化的复合控制方法。分别在零低速域、中高速域采用旋转高频电压注入法和滑模观测器法来对电机转速和转子位置进行估算,并在切换速域采用基于ADE算法的权重系数优化法来实现上述两种控制方法的平滑切换,从而实现IPMSM全速域无传感器控制。仿真结果表明:提出的复合控制方法能够实现电机全速域的无感控制和切换速域的平滑过渡,且具有良好的稳定性。 展开更多
关键词 内置式永磁同步电机 自适应差分进化算法 旋转高频电压注入法 滑模观测器
下载PDF
InfoWorks ICM-Delft 3D耦合模型在排水体系中点源污染溯源研究
7
作者 孙连鹏 储峰 +3 位作者 林健新 朱津君 李险峰 祝新哲 《环境科学与技术》 CAS CSCD 北大核心 2024年第1期75-82,共8页
城市排水的点源污染是引起黑臭水体的重要原因之一,该研究借助多元监测体系获得的水质数据,结合InfoWorks ICM-Delft 3D耦合模型及差分进化算法(DE)构建了污染溯源模型。以中山市某区域为研究对象,验证了耦合模型与DE算法对污染溯源的... 城市排水的点源污染是引起黑臭水体的重要原因之一,该研究借助多元监测体系获得的水质数据,结合InfoWorks ICM-Delft 3D耦合模型及差分进化算法(DE)构建了污染溯源模型。以中山市某区域为研究对象,验证了耦合模型与DE算法对污染溯源的有效性。研究表明,连续排放污染源的位置、流量、污染物浓度的溯源精度较高,相对误差均在±0.12的范围内,并且污染溯源精度随着污染源流量增大而下降;随着污染流量增大,瞬时排放污染流量与浓度溯源的相对误差逐渐减小,模型对高流量污染事件的溯源精度较高。该模型体系的构建和应用为城市排水点源污染的溯源提供了科学指导。 展开更多
关键词 城市点源污染溯源 InfoWorks ICM delft 3D 耦合模型 差分进化算法
下载PDF
Machine Learning-Assisted Low-Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction 被引量:1
8
作者 Jin Li Naiteng Wu +7 位作者 Jian Zhang Hong‑Hui Wu Kunming Pan Yingxue Wang Guilong Liu Xianming Liu Zhenpeng Yao Qiaobao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期161-187,共27页
Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffecti... Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water.Nevertheless,the conventional"trial and error"method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive.Fortunately,the advancement of machine learning brings new opportunities for electrocatalysts discovery and design.By analyzing experimental and theoretical data,machine learning can effectively predict their hydrogen evolution reaction(HER)performance.This review summarizes recent developments in machine learning for low-dimensional electrocatalysts,including zero-dimension nanoparticles and nanoclusters,one-dimensional nanotubes and nanowires,two-dimensional nanosheets,as well as other electrocatalysts.In particular,the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted.Finally,the future directions and perspectives for machine learning in electrocatalysis are discussed,emphasizing the potential for machine learning to accelerate electrocatalyst discovery,optimize their performance,and provide new insights into electrocatalytic mechanisms.Overall,this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research. 展开更多
关键词 Machine learning Hydrogen evolution reaction Low-dimensional electrocatalyst deSCRIPTOR algorithm
下载PDF
Multiple Elite Individual Guided Piecewise Search-Based Differential Evolution 被引量:1
9
作者 Shubham Gupta Shitu Singh +2 位作者 Rong Su Shangce Gao Jagdish Chand Bansal 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期135-158,共24页
The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation oper... The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments. 展开更多
关键词 Control parameters differential evolution metaheuristic algorithms mutation operator
下载PDF
基于L-SHADE算法的AUV载体磁干扰参数辨识的数值模拟
10
作者 周国华 李林锋 +2 位作者 吴轲娜 刘月林 夏帅 《兵工学报》 EI CAS CSCD 北大核心 2024年第8期2678-2687,共10页
采用自主水下航行器(Autonomous Underwater Vehicle,AUV)磁测平台可开展海洋地磁场测量、水下磁性目标探测和识别等工作,AUV磁测平台具有广阔的应用前景,但目前AUV载体磁干扰补偿技术研究尚不成熟,制约着水下航行器测磁精度。基于磁测... 采用自主水下航行器(Autonomous Underwater Vehicle,AUV)磁测平台可开展海洋地磁场测量、水下磁性目标探测和识别等工作,AUV磁测平台具有广阔的应用前景,但目前AUV载体磁干扰补偿技术研究尚不成熟,制约着水下航行器测磁精度。基于磁测平台抗磁干扰基本原理,提出一种基于线性种群规模缩减和成功历史的参数自适应差分进化(Success History-based Adaptive Differential Evolution with Linear Population Size Reduction,L-SHADE)算法的AUV载体磁干扰参数辨识的数值模拟方法。用磁偶极子和旋转椭球壳混合模型来等效模拟AUV载体磁干扰,通过模拟航行获得多组磁测数据,据此建立磁干扰参数辨识模型,并采用L-SHADE算法求解。通过数值模拟实验定量分析研究磁测平台测磁精度随磁传感器、平台姿态及航向等误差的传播规律。研究结果表明:当磁传感器测量精度为10 nT、姿态测量精度为0.01°、航向测量精度为0.1°时,测磁误差可小于100 nT。设计的AUV磁测平台抗干扰试验表明,地磁场总量最大相对误差为1.07%。 展开更多
关键词 自主水下航行器 磁干扰补偿 参数辨识 磁等效数学模型 L-SHAde算法
下载PDF
Efficient AUV Path Planning in Time-Variant Underwater Environment Using Differential Evolution Algorithm 被引量:4
11
作者 S.Mahmoud Zadeh D.M.W Powers +2 位作者 A.M.Yazdani K.Sammut A.Atyabi 《Journal of Marine Science and Application》 CSCD 2018年第4期585-591,共7页
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ... Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner. 展开更多
关键词 Path planning Differential evolution Autonomous UNdeRWATER vehicles evolutionARY algorithms OBSTACLE AVOIDANCE
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
12
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
Optimization of Electrocardiogram Classification Using Dipper Throated Algorithm and Differential Evolution
13
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +4 位作者 Faten Khalid Karim Sameer Alshetewi Abdelhameed Ibrahim Abdelaziz A.Abdelhamid D.L.Elsheweikh 《Computers, Materials & Continua》 SCIE EI 2023年第2期2379-2395,共17页
Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is ... Electrocardiogram(ECG)signal is a measure of the heart’s electrical activity.Recently,ECG detection and classification have benefited from the use of computer-aided systems by cardiologists.The goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification accuracy.In addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall performance.To prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing approaches.Moreover,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA tests.Experimental results confirmed the superiority and effectiveness of the proposed approach.The classification accuracy achieved by the proposed approach is(99.98%). 展开更多
关键词 ELECTROCARDIOGRAM differential evolution algorithm dipper throated optimization neural networks
下载PDF
Vector Dominating Multi-objective Evolution Algorithm for Aerodynamic-Structure Integrative Design of Wind Turbine Blade 被引量:1
14
作者 Wang Long Wang Tongguang +1 位作者 Wu Jianghai Ke Shitang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期1-8,共8页
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam... A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade. 展开更多
关键词 wind turbine multi-objective optimization vector method evolution algorithm
下载PDF
基于PCA-SaDE-ELM优化算法的煤层底板破坏深度预测及工程应用 被引量:1
15
作者 刘世伟 赵家鑫 +3 位作者 孙利辉 袁乐忠 杨江华 王中海 《煤炭技术》 CAS 2024年第6期69-73,共5页
基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的... 基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的最大绝对误差不超过0.7 m,相比现有其他预测模型,该模型预测精度提高约70%;云驾岭煤矿19101、19103和19105这3个典型工作面的破坏深度分别为10.80、10.94、11.34 m,介于规范方法和滑移场理论预测结果之间,进一步反映了模型的可靠性;建议对9#煤层底板加固改造后再进行回采。相关研究成果可为我国煤层底板破坏风险管理和煤炭资源的优化回采布置提供一定的理论支撑。 展开更多
关键词 自适应差分进化算法 极限学习机 底板破坏深度 预测模型
下载PDF
An Adaptive Differential Evolution Algorithm to Solve Constrained Optimization Problems in Engineering Design 被引量:2
16
作者 Y.Y. AO H.Q. CHI 《Engineering(科研)》 2010年第1期65-77,共13页
Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and re... Differential evolution (DE) algorithm has been shown to be a simple and efficient evolutionary algorithm for global optimization over continuous spaces, and has been widely used in both benchmark test functions and real-world applications. This paper introduces a novel mutation operator, without using the scaling factor F, a conventional control parameter, and this mutation can generate multiple trial vectors by incorporating different weighted values at each generation, which can make the best of the selected multiple parents to improve the probability of generating a better offspring. In addition, in order to enhance the capacity of adaptation, a new and adaptive control parameter, i.e. the crossover rate CR, is presented and when one variable is beyond its boundary, a repair rule is also applied in this paper. The proposed algorithm ADE is validated on several constrained engineering design optimization problems reported in the specialized literature. Compared with respect to algorithms representative of the state-of-the-art in the area, the experimental results show that ADE can obtain good solutions on a test set of constrained optimization problems in engineering design. 展开更多
关键词 DIFFERENTIAL evolution CONSTRAINED Optimization Engineering design evolutionARY algorithm CONSTRAINT HANDLING
下载PDF
Improved Adaptive Differential Evolution Algorithm for the Un-Capacitated Facility Location Problem
17
作者 Nan Jiang Huizhen Zhang 《Open Journal of Applied Sciences》 CAS 2023年第5期685-695,共11页
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the... The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm. 展开更多
关键词 Un-Capacitated Facility Location Problem Differential evolution algorithm Adaptive Operator
下载PDF
Parameters Identification of Tunnel Jointed Surrounding Rock Based on Gaussian Process Regression Optimized by Difference Evolution Algorithm 被引量:1
18
作者 Annan Jiang Xinping Guo +1 位作者 Shuai Zheng Mengfei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1177-1199,共23页
Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint mode... Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint model and three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with weak planes,but conventional methods have certain problems,such as a large number of parameters and large time consumption.To solve the problems,this study combines the orthogonal design,Gaussian process(GP)regression,and difference evolution(DE)optimization,and it constructs the parameters identification method of the jointed surrounding rock.The calculation process of parameters identification of a tunnel jointed surrounding rock based on the GP optimized by the DE includes the following steps.First,a three-dimensional numerical simulation based on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing schemes,where the model input consists of jointed rock parameters and model output is the information on the surrounding rock displacement and stress.Then,the GP regress model optimized by DE is trained by the data samples.Finally,the GP model is integrated into the DE algorithm,and the absolute differences in the displacement and stress between calculated and monitored values are used as the objective function,while the parameters of the jointed surrounding rock are used as variables and identified.The proposed method is verified by the experiments with a joint rock surface in the Dadongshan tunnel,which is located in Dalian,China.The obtained calculation and analysis results are as follows:CR=0.9,F=0.6,NP=100,and the difference strategy DE/Best/1 is recommended.The results of the back analysis are compared with the field monitored values,and the relative error is 4.58%,which is satisfactory.The algorithm influencing factors are also discussed,and it is found that the local correlation coefficientσf and noise standard deviationσn affected the prediction accuracy of the GP model.The results show that the proposed method is feasible and can achieve high identification precision.The study provides an effective reference for parameter identification of jointed surrounding rock in a tunnel. 展开更多
关键词 Gauss process regression differential evolution algorithm ubiquitous-joint model parameter identification orthogonal design
下载PDF
基于改进ADE的城轨列车运行节能优化方法
19
作者 周艳丽 鄢苗 杨辉 《控制工程》 CSCD 北大核心 2024年第5期778-786,共9页
城轨列车运行环境复杂,模式多变。为准确描述列车的实际运行状态,首先基于实际线路条件建立城轨列车动力学模型和多目标优化模型。然后,基于反三角函数logistic映射的初始化改进策略和基于logistic模型的控制参数自适应策略,提出一种改... 城轨列车运行环境复杂,模式多变。为准确描述列车的实际运行状态,首先基于实际线路条件建立城轨列车动力学模型和多目标优化模型。然后,基于反三角函数logistic映射的初始化改进策略和基于logistic模型的控制参数自适应策略,提出一种改进自适应差分进化(adaptive differential evolution,ADE)算法求解优化模型,可实现列车安全、准点、精确停车,节能、平稳运行。与传统高斯模型相比,通过采用钟形模型构建新的舒适度指标,能更好地改善舒适度。还针对多站间运行普遍采用固定运行策略的问题,结合专家经验和实际线路条件来自动选择站间运行策略,可缩小算法搜索范围并提高算法求解效率。最后,基于实际线路数据和车辆数据的仿真实验结果表明,所提方法有效降低了运行能耗,改善了乘客舒适性。 展开更多
关键词 城轨列车 转换工况 多目标优化 自适应差分进化算法
下载PDF
基于改进DE算法的机械臂轨迹规划的设计
20
作者 周力 何荣誉 +3 位作者 李浩 唐慧 杨柳湘子 夏愉乐 《自动化技术与应用》 2024年第9期12-15,41,共5页
为提高工业机器人在执行任务时的稳定性及快速性,避免机器人系统在运动过程中产生振荡造成额外的能量损耗,需优化机械手运动轨迹。设计一种以优化为目标的轨迹规划算法。该法是基于改进的差分进化(Differential Evolution,DE)算法优化的... 为提高工业机器人在执行任务时的稳定性及快速性,避免机器人系统在运动过程中产生振荡造成额外的能量损耗,需优化机械手运动轨迹。设计一种以优化为目标的轨迹规划算法。该法是基于改进的差分进化(Differential Evolution,DE)算法优化的3-5-3次多项式插值机械臂轨迹规划算法,利用基于改进DE算法的优化能力设计轨迹规划器,并在动力学仿真的基础上验证了方法的有效性、可行性。通过对仿真结果的分析,差分进化算法优化的轨迹运行时间更短,运动轨迹更光滑,从而避免了振荡的产生。 展开更多
关键词 机械臂 差分进化算法 轨迹跟踪 轨迹规划
下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部