Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study lever...Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.展开更多
Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus ...Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.展开更多
BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greate...BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greater difficulties in treatment.Therefore,it is essential to analyze the key pathway that affects the onset of cerebral infarction in young people from the perspective of genetics.AIM To compare the differentially expressed genes in the brain tissue of young and aged rats with middle cerebral artery occlusion and to analyse their effect on the key signalling pathway involved in the development of cerebral ischaemia in young rats.METHODS The Gene Expression Omnibus 2R online analysis tool was used to analyse the differentially expressed genes in the GSE166162 dataset regarding the development of cerebral ischaemia in young and aged groups of rats.DAVID 6.8 software was further used to filter the differentially expressed genes.These genes were subjected to Gene Ontology(GO)function analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to determine the key gene pathway that affects the occurrence of cerebral ischaemia in young rats.RESULTS Thirty-five differentially expressed genes(such as Igf2,Col1a2,and Sfrp1)were obtained;73 GO enrichment analysis pathways are mainly involved in biological processes such as drug response,amino acid stimulation response,blood vessel development,various signalling pathways,and enzyme regulation.They are involved in molecular functions such as drug binding,protein binding,dopamine binding,metal ion binding,and dopamine neurotransmitter receptor activity.KEGG pathway enrichment analysis showed a significantly enriched pathway:The cyclic adenosine monophosphate(c-AMP)signalling pathway.CONCLUSION The c-AMP signalling pathway might be the key pathway in the intervention of cerebral infarction in young people.展开更多
To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hyb...To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.展开更多
[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and gr...[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and groin skin (no wool growing) of Aohan fine wool sheep. [Results] 46 immune genes (fold change 〉2.0) were identified and classified, and then 6 of which were selected for QPCR confir- mation. The degree of consistency of the QPCR and microarray results was 66.67%, [Conclusion] Immune privilege may participate in wool growth regulation.展开更多
Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid...Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid vigor) is not well understood. A differential display technique was performed to identify genes with differential expression across twelve maize inbred lines and thirty-three hybrids during ear development. An incomplete diallel design was used to investigate the relationship between the global framework of differential gene expression and heterosis. It was found that the genes belonging to MONO pattern (i.e., genes expressed in both parental lines and in hybrid) was the highest in percentage among the total five patterns and illustrated that the properties of differentially expressed genes are not entirely responsible for heterosis. Furthermore,a larger number of differentially expressed genes in hybrid, which serves as a major reservoir for generating novel phenotypes that exhibit heterosis of certain agronomic traits during early development and differentiation of maize ear. Moreover, there were some silent genesin hybrids that are responsible for the arrest or abortion of spikelets and for the increase in kernels weight.展开更多
The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and l...The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.展开更多
AIM: To investigate SBA2 expression in CRC cell lines and surgical specimens of CRC and autologous healthy mucosa. METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) was used for relative quantification...AIM: To investigate SBA2 expression in CRC cell lines and surgical specimens of CRC and autologous healthy mucosa. METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) was used for relative quantification of SBA2 mRNA levels in 4 human CRC cell lines with different grades of differentiation and 30 clinical samples. Normalization of the results was achieved by simultaneous amplification of beta-actin as an internal control. RESULTS: In the exponential range of amplification, fairly good linearity demonstrated identical amplification efficiency for SBA2 and beta-actin (82%). Markedly lower levels of SBA2 mRNA were detectable in tumors, as compared with the coupled normal counterparts P【0.01). SBA2 expression was significantly (0.01】P 【 0.05) correlated with the grade of differentiation in CRC, with relatively higher levels in well-differentiated samples and lower in poorly-differentiated cases. Of the 9 cases with lymph nodes affected, 78% (7/9) had reduced SBA2 mRNA expression in contrast to 24% (5/21) in non-metastasis samples 0.01】P【0.05). CONCLUSION: SBA2 gene might be a promising novel biomarker of cell differentiation in colorectal cancer and its biological features need further studies.展开更多
Cucumber mosaic virus(CMV) is one of the most severe viral diseases transmitted by aphids infecting Solanum crops in China, causing great losses of crop yields and income in rural communities.The tobacco cultivars NC8...Cucumber mosaic virus(CMV) is one of the most severe viral diseases transmitted by aphids infecting Solanum crops in China, causing great losses of crop yields and income in rural communities.The tobacco cultivars NC82 and Taiyan 8 are closely related but differ in resistance to CMV.NC82 is susceptible to infection and Taiyan 8 is resistant, but the mechanisms underlying this difference in resistance are not clear.In this study, we conducted RNA sequencing to analyze changes in gene expression induced in the leaves of Taiyan 8 and NC82 upon systemic infection with CMV, compared with gene expression in the leaves of mock-inoculated plants.Leaves were sampled at one, three, eight, and 15 days after infection.In total, 3443 and 747 differentially expressed genes were identified in Taiyan 8 and NC82, respectively.Gene ontology and pathway enrichment analyses revealed that the different responses to CMV infection between cultivars were based on microtubulebased processes, pentose and glucuronate interconversions, plant–pathogen interaction,and hormone signal transduction pathways.Genes encoding pathogenesis-related proteins, disease-resistance proteins, lipoxygenase, cellulose synthase, an auxin response factor, and an ethylene receptor showed different expression patterns.The differences in gene expression following CMV infection likely contributed to the different resistance levels of these two tobacco cultivars.The comprehensive transcriptome dataset described here,which includes candidate response genes, will serve as a resource for further studies of the molecular mechanisms associated with tobacco defense responses against CMV.展开更多
Background A gap currently exists between genetic variants and the underlying cell and tissue biology of a trait,and expression quantitative trait loci(eQTL)studies provide important information to help close that gap...Background A gap currently exists between genetic variants and the underlying cell and tissue biology of a trait,and expression quantitative trait loci(eQTL)studies provide important information to help close that gap.However,two concerns that arise with eQTL analyses using RNA-sequencing data are normalization of data across samples and the data not following a normal distribution.Multiple pipelines have been suggested to address this.For instance,the most recent analysis of the human and farm Genotype-Tissue Expression(GTEx)project proposes using trimmed means of M-values(TMM)to normalize the data followed by an inverse normal transformation.Results In this study,we reasoned that eQTL analysis could be carried out using the same framework used for dif-ferential gene expression(DGE),which uses a negative binomial model,a statistical test feasible for count data.Using the GTEx framework,we identified 35 significant eQTLs(P<5×10^(–8))following the ANOVA model and 39 significant eQTLs(P<5×10^(–8))following the additive model.Using a differential gene expression framework,we identified 930 and six significant eQTLs(P<5×10^(–8))following an analytical framework equivalent to the ANOVA and additive model,respectively.When we compared the two approaches,there was no overlap of significant eQTLs between the two frameworks.Because we defined specific contrasts,we identified trans eQTLs that more closely resembled what we expect from genetic variants showing complete dominance between alleles.Yet,these were not identified by the GTEx framework.Conclusions Our results show that transforming RNA-sequencing data to fit a normal distribution prior to eQTL analysis is not required when the DGE framework is employed.Our proposed approach detected biologically relevant variants that otherwise would not have been identified due to data transformation to fit a normal distribution.展开更多
BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has graduall...BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has gradually become the new standard treatment option at present,and there is an urgent need to identify valuable biomarkers to classify patients with different characteristics into subgroups.AIM To determined the effects of differentially expressed immune-related genes(DEIRGs)on the development,prognosis,tumor microenvironment(TME),and treatment response among GC patients with the expectation of providing new biomarkers for personalized treatment of GC populations.METHODS Gene expression data and clinical pathologic information were downloaded from The Cancer Genome Atlas(TCGA),and immune-related genes(IRGs)were searched from ImmPort.DEIRGs were extracted from the intersection of the differentially-expressed genes(DEGs)and IRGs lists.The enrichment pathways of key genes were obtained by analyzing the Kyoto Encyclopedia of Genes and Genomes(KEGGs)and Gene Ontology(GO)databases.To identify genes associated with prognosis,a tumor risk score model based on DEIRGs was constructed using Least Absolute Shrinkage and Selection Operator and multivariate Cox regression.The tumor risk score was divided into high-and lowrisk groups.The entire cohort was randomly divided into a 2:1 training cohort and a test cohort for internal validation to assess the feasibility of the risk model.The infiltration of immune cells was obtained using‘CIBERSORT,’and the infiltration of immune subgroups in high-and low-risk groups was analyzed.The GC immune score data were obtained and the difference in immune scores between the two groups was analyzed.RESULTS We collected 412 GC and 36 adjacent tissue samples,and identified 3627 DEGs and 1311 IRGs.A total of 482 DEIRGs were obtained.GO analysis showed that DEIRGs were mainly distributed in immunoglobulin complexes,receptor ligand activity,and signaling receptor activators.KEGG pathway analysis showed that the top three DEIRGs enrichment types were cytokine-cytokine receptors,neuroactive ligand receptor interactions,and viral protein interactions.We ultimately obtained an immune-related signature based on 10 genes,including 9 risk genes(LCN1,LEAP2,TMSB15A mRNA,DEFB126,PI15,IGHD3-16,IGLV3-22,CGB5,and GLP2R)and 1 protective gene(LGR6).Kaplan-Meier survival analysis,receiver operating characteristic curve analysis,and risk curves confirmed that the risk model had good predictive ability.Multivariate COX analysis showed that age,stage,and risk score were independent prognostic factors for patients with GC.Meanwhile,patients in the low-risk group had higher tumor mutation burden and immunophenotype,which can be used to predict the immune checkpoint inhibitor response.Both cytotoxic T lymphocyte antigen4+and programmed death 1+patients with lower risk scores were more sensitive to immunotherapy.CONCLUSION In this study a new prognostic model consisting of 10 DEIRGs was constructed based on the TME.By providing risk factor analysis and prognostic information,our risk model can provide new directions for immunotherapy in GC patients.展开更多
Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca...Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca vulgaris in the Chinese population.This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing.Methods:High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform.The transcriptomes were analyzed using bioinformatics and the differentially expressed genes(DEGs)were verified by immunohistochemistry.Verruca vulgaris exhibited a unique molecular signature.Results:In total,1,643 DEGs were identified in verruca vulgaris compared to normal skin.The functions of the DEGs were studies by Gene Ontology(GO)enrichment,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,DEGs Reactome analysis,disease annotation function,and STRING protein-protein interaction(PPI)network analysis.The results revealed 595 GO terms associated with the cell cycle,signal transduction,immune system,signaling molecules,and interaction.The Reactome analysis revealed enrichment in reversible hydration of carbon dioxide and BMP signaling,while the disease annotation function revealed that the enriched DEGs are involved in keratosis disorders.The STRING PPI network showed that the edges with the highest density mainly included the 2′-5′oligoadenylate synthase(OAS)family-related proteins.Furthermore,the M-code analysis found ISG15,IRF7,and OASL were scored as significant modules and their high expression compared to the control was verified by immunohistochemistry.Conclusion:These findings contribute to the genetic information of verruca vulgaris in the Chinese population,revealing that interferon-stimulated genes may play essential roles in verruca vulgaris.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
AIM: To investigate the impact of hepatitis B virus (HBV) infection on cellular gene expression, by conducting both in vitro and in vivo studies. METHODS: Knockdown of HBV was targeted by stable expression of short ha...AIM: To investigate the impact of hepatitis B virus (HBV) infection on cellular gene expression, by conducting both in vitro and in vivo studies. METHODS: Knockdown of HBV was targeted by stable expression of short hairpin RNA (shRNA) in huH-1 cells. Cellular gene expression was compared using a human 30K cDNA microarray in the cells and quantified by real-time reverse transcription-polymerase chain reaction (RT-PCR) (qRT-PCR) in the cells, hepatocellular carcinoma (HCC) and surrounding non-cancerous liver tissues (SL). RESULTS: The expressions of HBsAg and HBx protein were markedly suppressed in the cells and in HBx transgenic mouse liver, respectively, after introduction of shRNA. Of the 30K genes studied, 135 and 103 genes were identified as being down- and up-regulated, respectively, by at least twofold in the knockdown cells. Functional annotation revealed that 85 and 62 genes were classified into four up-regulated and five down-regulated functional categories, respectively. When gene expression levels were compared between HCC and SL, eight candidate genes that were confirmed to be up- or down-regulated in the knockdown cells by both microarray and qRT-PCR analyses were not expressed as expected from HBV reduction in HCC, but had similar expression patterns in HBV- and hepatitis C virus-associated cases. In contrast, among the eight genes, only APM2 was constantly repressed in HBV non-associated tissues irrespective of HCC or SL. CONCLUSION: The signature of cellular gene expression should provide new information regarding the pathophysiological mechanisms of persistent hepatitis and hepatocarcinogenesis that are associated with HBV infection.展开更多
BACKGROUND The relationship between hepatitis B surface antigen(HBsAg)-positive carrier status and liver cancer has been extensively studied.However,the epigenetic changes that occur during progression from HBsAg-posi...BACKGROUND The relationship between hepatitis B surface antigen(HBsAg)-positive carrier status and liver cancer has been extensively studied.However,the epigenetic changes that occur during progression from HBsAg-positive carrier status or cirrhosis to liver cancer are unknown.The epigenetic modification of DNA hydroxymethylation is critical in tumor development.Further,5-hydroxymethylcytosine(5hmC)is an important base for DNA demethylation and epigenetic regulation.It is also involved in the assembly of chromosomes and the regulation of gene expression.However,the mechanism of action of 5hmC in HBsAgpositive carriers or patients with cirrhosis who develop liver cancer has not been fully elucidated.AIM To investigate the possible epigenetic mechanism of HBsAg-positive carriers and hepatocellular carcinoma(HCC)progression from cirrhosis.METHODS Forty HBsAg-positive carriers,forty patients with liver cirrhosis,and forty patients with liver cancer admitted to the First People's Hospital of Yongkang between March 2020 and November 2021 were selected as participants.Free DNA was extracted using a cf-DNA kit.cfDNA was extracted by 5hmC DNA sequencing for principal component analysis,the expression profiles of the three groups of samples were detected,and the differentially expressed genes(DEGs)modified by hydroxymethylation were screened.Bioinformatic analysis was used to enrich DEGs,such as in biological pathways.RESULTS A total of 16455 hydroxymethylated genes were identified.Sequencing results showed that 32 genes had significant 5hmC modification differences between HBsAg carriers and liver cancer patients,of which 30 were upregulated and 2 downregulated in patients with HCC compared with HBsAg-positive carriers.Significant 5hmC modification differences between liver cirrhosis and liver cancer patients were identified in 20 genes,of which 17 were upregulated and 3 were downregulated in patients with HCC compared with those with cirrhosis.These genes may have potential loci that are undiscovered or unelucidated,which contribute to the development and progression of liver cancer.Analysis of gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes showed that the major signaling pathways involved in the differential genes were biliary secretion and insulin secretion.The analysis of protein interactions showed that the important genes in the protein-protein interaction network were phosphoenolpyruvate carboxykinase and solute carrier family 2.CONCLUSION The occurrence and development of liver cancer involves multiple genes and pathways,which may be potential targets for preventing hepatitis B carriers from developing liver cancer.展开更多
The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph...The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph, used as a model organism for this study due to its genomic complexity and metabolic versatility. Its genome has been completely sequenced, and profiles of the differential gene expression under aerobic, semi-aerobic, and photosynthetic conditions were examined. In this study, we hypothesized that R. sphaeroides will show altered growth characteristics, morphological properties, and gene expression patterns when grown under simulated microgravity. To test that, we measured the optical density and colony-forming units of cell cultures grown under both microgravity and normal gravity conditions. Differences in the cell morphology were observed using scanning electron microscopy (SEM) images by measuring the length and the surface area of the cells under both conditions. Furthermore, we also identified homologous genes of R. spheroides using the differential gene expression study of Acidovorax under microgravity in our laboratory. Growth kinetics results showed that R. sphaeroides cells grown under microgravity experience a shorter log phase and early stationary phase compared to the cells growing under normal gravity conditions. The length and surface area of the cells under microgravity were significantly higher confirming that bacterial cells experience altered morphological features when grown under microgravity conditions. Differentially expressed homologous gene analysis indicated that genes coding for several COG and GO functions, such as metabolism, signal-transduction, transcription, translation, chemotaxis, and cell motility are differentially expressed to adapt and survive microgravity.展开更多
Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture ...Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.展开更多
The Chinese crested duck is a unique duck breed having a bulbous feather shape on its duck head.However,the mechanisms involved in its formation and development are unclear.In the present study,RNA sequencing analysis...The Chinese crested duck is a unique duck breed having a bulbous feather shape on its duck head.However,the mechanisms involved in its formation and development are unclear.In the present study,RNA sequencing analysis was performed on the crested tissues of 6 Chinese crested ducks and the scalp tissues of 6 cherry valley ducks(CVs)from 2 developmental stages.This study identified 261 differentially expressed genes(DEGs),122 upregulated and 139 downregulated,in the E28 stage and 361 DEGs,154 upregulated and 207 downregulated in the D42 stage between CC and CV ducks.The subsequent results of weighted gene co-expression network analysis(WGCNA)revealed that the turquoise and cyan modules were associated with the crest trait in the D42 stage,meanwhile,the green,brown,and pink modules were associated with the crest trait in the E28 stage.Venn analysis of the DEGs and WGCNA showed that 145 and 45 genes are associated between the D42 and E28 stages,respectively.The expression of WNT16,BMP2,SLC35F2,SLC6A15,APOBEC2,ABHD6,TNNC2,MYL1,and TNNI2 were verified by real-time quantitative PCR.This study provides an approach to reveal the molecular mechanisms underlying the crested trait development.展开更多
Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma rema...Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.展开更多
BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candi...BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candidate genes related to the development of GC and iden-tify potential pathogenic mechanisms through comprehensive bioinformatics analysis.METHODS The Gene Expression Omnibus database was used to obtain the GSE183136 dataset,which includes a total of 135 GC samples.The limma package in R software was employed to identify differentially expressed genes(DEGs).Thereafter,enrichment analyses of Gene Ontology(GO)terms and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were performed for the gene modules using the clusterProfile package in R software.The protein-protein interaction(PPI)networks of target genes were constructed using STRING and visualized by Cytoscape software.The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram.The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves.Moreover,real-time quantitative polymerase chain reaction(RT-qPCR)and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase(GPT)in GC and normal immortalized cell lines.In addition,cell viability,cell cycle distribution,migration and invasion were evaluated by cell counting kit-8,flow cytometry and transwell assays.Furthermore,we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital,Dingli Clinical College of Wenzhou Medical University,The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020.The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients.RESULTS We selected 19214 genes from the GSE183136 dataset,among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value<0.05.In addition,GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction,whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion,vascular smooth muscle contraction and biosynthesis of the different cofactors.Furthermore,PPI networks were constructed based on the various upregulated and downregulated genes,and there were a total 15 upregulated and 10 downregulated hub genes.After a comprehensive analysis,several hub genes,including runt-related transcription factor 2(RUNX2),salmonella pathogenicity island 1(SPI1),lysyl oxidase(LOX),fibrillin 1(FBN1)and GPT,displayed prognostic values.Interestingly,it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells.Furthermore,the expression level of GPT was found to be associated with age,lymph node metastasis,pathological staging and distant metastasis(P<0.05).CONCLUSION RUNX2,SPI1,LOX,FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis.GPT was significantly associated with the prognosis of GC,and its upregulation can effectively inhibit the proliferative,migrative and invasive capabilities of GC cells.展开更多
文摘Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.
基金supported by the Science and Technology Beneficiary Program of Ningxia Hui Autonomous Region(No.2023CMG03027)the Ningxia Key Research and Development Program(No.2022BEG03167)the National Natural Science Foundation of China(No.82060275).
文摘Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.
文摘BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greater difficulties in treatment.Therefore,it is essential to analyze the key pathway that affects the onset of cerebral infarction in young people from the perspective of genetics.AIM To compare the differentially expressed genes in the brain tissue of young and aged rats with middle cerebral artery occlusion and to analyse their effect on the key signalling pathway involved in the development of cerebral ischaemia in young rats.METHODS The Gene Expression Omnibus 2R online analysis tool was used to analyse the differentially expressed genes in the GSE166162 dataset regarding the development of cerebral ischaemia in young and aged groups of rats.DAVID 6.8 software was further used to filter the differentially expressed genes.These genes were subjected to Gene Ontology(GO)function analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to determine the key gene pathway that affects the occurrence of cerebral ischaemia in young rats.RESULTS Thirty-five differentially expressed genes(such as Igf2,Col1a2,and Sfrp1)were obtained;73 GO enrichment analysis pathways are mainly involved in biological processes such as drug response,amino acid stimulation response,blood vessel development,various signalling pathways,and enzyme regulation.They are involved in molecular functions such as drug binding,protein binding,dopamine binding,metal ion binding,and dopamine neurotransmitter receptor activity.KEGG pathway enrichment analysis showed a significantly enriched pathway:The cyclic adenosine monophosphate(c-AMP)signalling pathway.CONCLUSION The c-AMP signalling pathway might be the key pathway in the intervention of cerebral infarction in young people.
文摘To provide an insight into the molecular basis of heterosis, differential display of mRNA was used to analyze the difference of gene expression between wheat (Triticum aestivum L.) heterotic hybrid A, nonheterotic hybrid B and their parental inbreds in the primary roots. By using 5′ end random primers in combination with three one-base-anchored primers, it was found that 22.5% and 22.9% of 877 total displayed cDNAs were differentially expressed between hybrid A, B and their parents, respectively. Both quantitative and qualitative differences in gene expression between hybrids and their parental inbreds were obvious, indicating that the patterns of gene expression in hybrids alter significantly as compared to their corresponding parents. On the other hand, by using MADS-box gene specific 5′ end primer for DDRT-PCR, we found that nearly all of the displayed cDNA fragments were polymorphic between hybrids and their parents, and major difference occurred in qualitative level, in which hybrid specific-expressed and silenced genes are the major two patterns, suggesting that MADS-box gene may be important for manifestation of differential gene expression and wheat heterosis. In comparison with our previous results by using seedling leaves, it is indicated that differential gene expression between hybrids and parents is dependent on the tissues tested, and more differentially expressed genes were observed in the primary roots than in the seedling leaves. Therefore, it is concluded that the expressions of both randomly displayed cDNAs and transcription factor genes, such as MADS-box, alter significantly between hybrids and their parents, which might be responsible for the observed heterosis.
基金Supported by Project of National Hair Sheep Industry Technology System(CARS-40)~~
文摘[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and groin skin (no wool growing) of Aohan fine wool sheep. [Results] 46 immune genes (fold change 〉2.0) were identified and classified, and then 6 of which were selected for QPCR confir- mation. The degree of consistency of the QPCR and microarray results was 66.67%, [Conclusion] Immune privilege may participate in wool growth regulation.
文摘Maize (Zea raays L.) is one of the most important crops because of the remarkable properties of its hybrid, which is responsible for the high commercial value of hybrid maize. The genetic basis of heterosis (hybrid vigor) is not well understood. A differential display technique was performed to identify genes with differential expression across twelve maize inbred lines and thirty-three hybrids during ear development. An incomplete diallel design was used to investigate the relationship between the global framework of differential gene expression and heterosis. It was found that the genes belonging to MONO pattern (i.e., genes expressed in both parental lines and in hybrid) was the highest in percentage among the total five patterns and illustrated that the properties of differentially expressed genes are not entirely responsible for heterosis. Furthermore,a larger number of differentially expressed genes in hybrid, which serves as a major reservoir for generating novel phenotypes that exhibit heterosis of certain agronomic traits during early development and differentiation of maize ear. Moreover, there were some silent genesin hybrids that are responsible for the arrest or abortion of spikelets and for the increase in kernels weight.
基金supported by the National Basic Research Program of China (973 Program, 2004CB117306).
文摘The study aims to clarify the differential gene expression between cotton hybrids and their parents in order to better understand the molecular basis of cotton heterosis. The research focused on cotton heterotic and lower heterotic hybrids and their parents during the four crucial stages, which were analyzed using a differential display technique. The results indicated that there were both quantitative and qualitative differences in gene expression amongst them. The quantitative differences include over- and under-expression of parental genes and the dominant expression of highly-expressed parental genes in hybrids. In contrast, the qualitative differences are the following: (i) Bands were observed in both parents but not in the F1 hybrid (BPnF1); (ii) bands occurred in either of the parents but not in the F1 hybrid (UPnF1); (iii) bands presented only in the F1 hybrid but not in either of the parents (UF1nP); and (iv) bands were detected in either of the parents and the F1 hybrid (UPF1). Overall, the major differences of gene expression occurred in the qualitative level and four related differential patterns were observed. Furthermore, the amount of differential patterns during the flowering stage was relatively higher than those of other stages. At this juncture, both the amount of hybrid-specific expression patterns at flowering stage and the silenced expression patterns at boll-forming stage in highly heterotic hybrids were found higher than those in the lower heterotic ones. It was concluded that significant differences of gene expression in leaves were present between cotton hybrid and its parents during the whole growing stages. Hence, these differences might be responsible for the observed cotton heterosis.
文摘AIM: To investigate SBA2 expression in CRC cell lines and surgical specimens of CRC and autologous healthy mucosa. METHODS: Reverse transcription-polymerase chain reaction (RT-PCR) was used for relative quantification of SBA2 mRNA levels in 4 human CRC cell lines with different grades of differentiation and 30 clinical samples. Normalization of the results was achieved by simultaneous amplification of beta-actin as an internal control. RESULTS: In the exponential range of amplification, fairly good linearity demonstrated identical amplification efficiency for SBA2 and beta-actin (82%). Markedly lower levels of SBA2 mRNA were detectable in tumors, as compared with the coupled normal counterparts P【0.01). SBA2 expression was significantly (0.01】P 【 0.05) correlated with the grade of differentiation in CRC, with relatively higher levels in well-differentiated samples and lower in poorly-differentiated cases. Of the 9 cases with lymph nodes affected, 78% (7/9) had reduced SBA2 mRNA expression in contrast to 24% (5/21) in non-metastasis samples 0.01】P【0.05). CONCLUSION: SBA2 gene might be a promising novel biomarker of cell differentiation in colorectal cancer and its biological features need further studies.
基金funded by the Agricultural Science and Technology Innovation Program (ASTIP-TRIC01)the Science Foundation for Young Scientists of the Tobacco Research Institute of the Chinese Academy of Agricultural Sciences(2016A04)+2 种基金the National Natural Science Foundation of China (31301678)Fundamental Research Funds for Central Nonprofit Scientific InstitutionTobacco Genome Project of China National Tobacco Corporation (110201601028, 110201402006, 110201301009)
文摘Cucumber mosaic virus(CMV) is one of the most severe viral diseases transmitted by aphids infecting Solanum crops in China, causing great losses of crop yields and income in rural communities.The tobacco cultivars NC82 and Taiyan 8 are closely related but differ in resistance to CMV.NC82 is susceptible to infection and Taiyan 8 is resistant, but the mechanisms underlying this difference in resistance are not clear.In this study, we conducted RNA sequencing to analyze changes in gene expression induced in the leaves of Taiyan 8 and NC82 upon systemic infection with CMV, compared with gene expression in the leaves of mock-inoculated plants.Leaves were sampled at one, three, eight, and 15 days after infection.In total, 3443 and 747 differentially expressed genes were identified in Taiyan 8 and NC82, respectively.Gene ontology and pathway enrichment analyses revealed that the different responses to CMV infection between cultivars were based on microtubulebased processes, pentose and glucuronate interconversions, plant–pathogen interaction,and hormone signal transduction pathways.Genes encoding pathogenesis-related proteins, disease-resistance proteins, lipoxygenase, cellulose synthase, an auxin response factor, and an ethylene receptor showed different expression patterns.The differences in gene expression following CMV infection likely contributed to the different resistance levels of these two tobacco cultivars.The comprehensive transcriptome dataset described here,which includes candidate response genes, will serve as a resource for further studies of the molecular mechanisms associated with tobacco defense responses against CMV.
基金partially funded by the Virginia Cattle Industry Board and the Virginia Agriculture CouncilVT Open Access Subvention Fund for the partial support of the publication fees
文摘Background A gap currently exists between genetic variants and the underlying cell and tissue biology of a trait,and expression quantitative trait loci(eQTL)studies provide important information to help close that gap.However,two concerns that arise with eQTL analyses using RNA-sequencing data are normalization of data across samples and the data not following a normal distribution.Multiple pipelines have been suggested to address this.For instance,the most recent analysis of the human and farm Genotype-Tissue Expression(GTEx)project proposes using trimmed means of M-values(TMM)to normalize the data followed by an inverse normal transformation.Results In this study,we reasoned that eQTL analysis could be carried out using the same framework used for dif-ferential gene expression(DGE),which uses a negative binomial model,a statistical test feasible for count data.Using the GTEx framework,we identified 35 significant eQTLs(P<5×10^(–8))following the ANOVA model and 39 significant eQTLs(P<5×10^(–8))following the additive model.Using a differential gene expression framework,we identified 930 and six significant eQTLs(P<5×10^(–8))following an analytical framework equivalent to the ANOVA and additive model,respectively.When we compared the two approaches,there was no overlap of significant eQTLs between the two frameworks.Because we defined specific contrasts,we identified trans eQTLs that more closely resembled what we expect from genetic variants showing complete dominance between alleles.Yet,these were not identified by the GTEx framework.Conclusions Our results show that transforming RNA-sequencing data to fit a normal distribution prior to eQTL analysis is not required when the DGE framework is employed.Our proposed approach detected biologically relevant variants that otherwise would not have been identified due to data transformation to fit a normal distribution.
基金Beijing CSCO Clinical Oncology Research Foundation,No.Y-HH202102-0308.
文摘BACKGROUND Treatment options for patients with gastric cancer(GC)continue to improve,but the overall prognosis is poor.The use of PD-1 inhibitors has also brought benefits to patients with advanced GC and has gradually become the new standard treatment option at present,and there is an urgent need to identify valuable biomarkers to classify patients with different characteristics into subgroups.AIM To determined the effects of differentially expressed immune-related genes(DEIRGs)on the development,prognosis,tumor microenvironment(TME),and treatment response among GC patients with the expectation of providing new biomarkers for personalized treatment of GC populations.METHODS Gene expression data and clinical pathologic information were downloaded from The Cancer Genome Atlas(TCGA),and immune-related genes(IRGs)were searched from ImmPort.DEIRGs were extracted from the intersection of the differentially-expressed genes(DEGs)and IRGs lists.The enrichment pathways of key genes were obtained by analyzing the Kyoto Encyclopedia of Genes and Genomes(KEGGs)and Gene Ontology(GO)databases.To identify genes associated with prognosis,a tumor risk score model based on DEIRGs was constructed using Least Absolute Shrinkage and Selection Operator and multivariate Cox regression.The tumor risk score was divided into high-and lowrisk groups.The entire cohort was randomly divided into a 2:1 training cohort and a test cohort for internal validation to assess the feasibility of the risk model.The infiltration of immune cells was obtained using‘CIBERSORT,’and the infiltration of immune subgroups in high-and low-risk groups was analyzed.The GC immune score data were obtained and the difference in immune scores between the two groups was analyzed.RESULTS We collected 412 GC and 36 adjacent tissue samples,and identified 3627 DEGs and 1311 IRGs.A total of 482 DEIRGs were obtained.GO analysis showed that DEIRGs were mainly distributed in immunoglobulin complexes,receptor ligand activity,and signaling receptor activators.KEGG pathway analysis showed that the top three DEIRGs enrichment types were cytokine-cytokine receptors,neuroactive ligand receptor interactions,and viral protein interactions.We ultimately obtained an immune-related signature based on 10 genes,including 9 risk genes(LCN1,LEAP2,TMSB15A mRNA,DEFB126,PI15,IGHD3-16,IGLV3-22,CGB5,and GLP2R)and 1 protective gene(LGR6).Kaplan-Meier survival analysis,receiver operating characteristic curve analysis,and risk curves confirmed that the risk model had good predictive ability.Multivariate COX analysis showed that age,stage,and risk score were independent prognostic factors for patients with GC.Meanwhile,patients in the low-risk group had higher tumor mutation burden and immunophenotype,which can be used to predict the immune checkpoint inhibitor response.Both cytotoxic T lymphocyte antigen4+and programmed death 1+patients with lower risk scores were more sensitive to immunotherapy.CONCLUSION In this study a new prognostic model consisting of 10 DEIRGs was constructed based on the TME.By providing risk factor analysis and prognostic information,our risk model can provide new directions for immunotherapy in GC patients.
基金The National Natural Science Foundation of China(Grant No.81903227)supported our study.
文摘Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca vulgaris in the Chinese population.This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing.Methods:High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform.The transcriptomes were analyzed using bioinformatics and the differentially expressed genes(DEGs)were verified by immunohistochemistry.Verruca vulgaris exhibited a unique molecular signature.Results:In total,1,643 DEGs were identified in verruca vulgaris compared to normal skin.The functions of the DEGs were studies by Gene Ontology(GO)enrichment,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,DEGs Reactome analysis,disease annotation function,and STRING protein-protein interaction(PPI)network analysis.The results revealed 595 GO terms associated with the cell cycle,signal transduction,immune system,signaling molecules,and interaction.The Reactome analysis revealed enrichment in reversible hydration of carbon dioxide and BMP signaling,while the disease annotation function revealed that the enriched DEGs are involved in keratosis disorders.The STRING PPI network showed that the edges with the highest density mainly included the 2′-5′oligoadenylate synthase(OAS)family-related proteins.Furthermore,the M-code analysis found ISG15,IRF7,and OASL were scored as significant modules and their high expression compared to the control was verified by immunohistochemistry.Conclusion:These findings contribute to the genetic information of verruca vulgaris in the Chinese population,revealing that interferon-stimulated genes may play essential roles in verruca vulgaris.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
文摘AIM: To investigate the impact of hepatitis B virus (HBV) infection on cellular gene expression, by conducting both in vitro and in vivo studies. METHODS: Knockdown of HBV was targeted by stable expression of short hairpin RNA (shRNA) in huH-1 cells. Cellular gene expression was compared using a human 30K cDNA microarray in the cells and quantified by real-time reverse transcription-polymerase chain reaction (RT-PCR) (qRT-PCR) in the cells, hepatocellular carcinoma (HCC) and surrounding non-cancerous liver tissues (SL). RESULTS: The expressions of HBsAg and HBx protein were markedly suppressed in the cells and in HBx transgenic mouse liver, respectively, after introduction of shRNA. Of the 30K genes studied, 135 and 103 genes were identified as being down- and up-regulated, respectively, by at least twofold in the knockdown cells. Functional annotation revealed that 85 and 62 genes were classified into four up-regulated and five down-regulated functional categories, respectively. When gene expression levels were compared between HCC and SL, eight candidate genes that were confirmed to be up- or down-regulated in the knockdown cells by both microarray and qRT-PCR analyses were not expressed as expected from HBV reduction in HCC, but had similar expression patterns in HBV- and hepatitis C virus-associated cases. In contrast, among the eight genes, only APM2 was constantly repressed in HBV non-associated tissues irrespective of HCC or SL. CONCLUSION: The signature of cellular gene expression should provide new information regarding the pathophysiological mechanisms of persistent hepatitis and hepatocarcinogenesis that are associated with HBV infection.
基金Supported by Science and Technology Planning Project of Zhejiang Province,No.LGF20H160001.
文摘BACKGROUND The relationship between hepatitis B surface antigen(HBsAg)-positive carrier status and liver cancer has been extensively studied.However,the epigenetic changes that occur during progression from HBsAg-positive carrier status or cirrhosis to liver cancer are unknown.The epigenetic modification of DNA hydroxymethylation is critical in tumor development.Further,5-hydroxymethylcytosine(5hmC)is an important base for DNA demethylation and epigenetic regulation.It is also involved in the assembly of chromosomes and the regulation of gene expression.However,the mechanism of action of 5hmC in HBsAgpositive carriers or patients with cirrhosis who develop liver cancer has not been fully elucidated.AIM To investigate the possible epigenetic mechanism of HBsAg-positive carriers and hepatocellular carcinoma(HCC)progression from cirrhosis.METHODS Forty HBsAg-positive carriers,forty patients with liver cirrhosis,and forty patients with liver cancer admitted to the First People's Hospital of Yongkang between March 2020 and November 2021 were selected as participants.Free DNA was extracted using a cf-DNA kit.cfDNA was extracted by 5hmC DNA sequencing for principal component analysis,the expression profiles of the three groups of samples were detected,and the differentially expressed genes(DEGs)modified by hydroxymethylation were screened.Bioinformatic analysis was used to enrich DEGs,such as in biological pathways.RESULTS A total of 16455 hydroxymethylated genes were identified.Sequencing results showed that 32 genes had significant 5hmC modification differences between HBsAg carriers and liver cancer patients,of which 30 were upregulated and 2 downregulated in patients with HCC compared with HBsAg-positive carriers.Significant 5hmC modification differences between liver cirrhosis and liver cancer patients were identified in 20 genes,of which 17 were upregulated and 3 were downregulated in patients with HCC compared with those with cirrhosis.These genes may have potential loci that are undiscovered or unelucidated,which contribute to the development and progression of liver cancer.Analysis of gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes showed that the major signaling pathways involved in the differential genes were biliary secretion and insulin secretion.The analysis of protein interactions showed that the important genes in the protein-protein interaction network were phosphoenolpyruvate carboxykinase and solute carrier family 2.CONCLUSION The occurrence and development of liver cancer involves multiple genes and pathways,which may be potential targets for preventing hepatitis B carriers from developing liver cancer.
文摘The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph, used as a model organism for this study due to its genomic complexity and metabolic versatility. Its genome has been completely sequenced, and profiles of the differential gene expression under aerobic, semi-aerobic, and photosynthetic conditions were examined. In this study, we hypothesized that R. sphaeroides will show altered growth characteristics, morphological properties, and gene expression patterns when grown under simulated microgravity. To test that, we measured the optical density and colony-forming units of cell cultures grown under both microgravity and normal gravity conditions. Differences in the cell morphology were observed using scanning electron microscopy (SEM) images by measuring the length and the surface area of the cells under both conditions. Furthermore, we also identified homologous genes of R. spheroides using the differential gene expression study of Acidovorax under microgravity in our laboratory. Growth kinetics results showed that R. sphaeroides cells grown under microgravity experience a shorter log phase and early stationary phase compared to the cells growing under normal gravity conditions. The length and surface area of the cells under microgravity were significantly higher confirming that bacterial cells experience altered morphological features when grown under microgravity conditions. Differentially expressed homologous gene analysis indicated that genes coding for several COG and GO functions, such as metabolism, signal-transduction, transcription, translation, chemotaxis, and cell motility are differentially expressed to adapt and survive microgravity.
基金the National Key Research and Development Program of the Ministry of Science and Technology(CN)(No.2022YFD2400401)the Key Research and Development Plan of Shandong Province(CN)(for Academician Team in Shandong)(No.2023ZLYS02)+1 种基金the Fundamental Research Funds for the Central Universities(No.202261029)the Enterprise Authorized Project(No.20200025)。
文摘Turbot Scophthalmus maximus is an important mariculture fish species with high economic value.However,the bacterial diseases caused by Vibrio anguillarum infection bring huge economic losses to the turbot aquaculture industry.To understand the immune response of the turbot against V.anguillarum infection and to explore novel immune-related genes,the transcriptome analysis of turbot spleen and gills were conducted after V.anguillarum infection.Differentially expressed genes(DEGs)were identified in spleen and gill of the turbot amounted to 17261 and 16436,respectively.A large number of immunerelated DEGs were enriched in cytokine-cytokine receptor interaction signaling pathway,and the others by the kyoto encyclopedia of genes and genomes(KEGG)enrichment.The gene ontology(GO)classification analysis revealed that V.anguillarum infection had the greatest effect on biological processes and cellular components.Twelve immune-related DEGs were identified in the spleen(cstl.1,egfl6,lamb21,v2rx4,calcr,and gpr78a)and gills(ghra,sh3gl2a,cst12,inhbaa,cxcl8,and il-1b)by heat map.The proteinprotein interaction(PPI)networks were constructed to analyze the immune mechanism.The results demonstrate that the maturation and antigen processing of major histocompatibility complex(MHC)class II molecule,and calcitonin-or adrenomedullin-regulated physiological activity were important events in the immunity of turbot against V.anguillarum infection.In the gills,the protein interactions in TGF-βsignaling pathway,production of inflammatory factors,and endocytosis regulation were most significant.Our research laid a foundation for discovering novel immune-related genes and enriching the knowledge of immune mechanisms of turbot against V.anguillarum infection.
基金supported by the earmarked fund for CARS,China(CARS-42)the earmarked fund for Jiangsu Agricultural Industry Technology System,China(JATS(2022)331)the Jiangsu Key Research and Development Program,China(BE2021332)。
文摘The Chinese crested duck is a unique duck breed having a bulbous feather shape on its duck head.However,the mechanisms involved in its formation and development are unclear.In the present study,RNA sequencing analysis was performed on the crested tissues of 6 Chinese crested ducks and the scalp tissues of 6 cherry valley ducks(CVs)from 2 developmental stages.This study identified 261 differentially expressed genes(DEGs),122 upregulated and 139 downregulated,in the E28 stage and 361 DEGs,154 upregulated and 207 downregulated in the D42 stage between CC and CV ducks.The subsequent results of weighted gene co-expression network analysis(WGCNA)revealed that the turquoise and cyan modules were associated with the crest trait in the D42 stage,meanwhile,the green,brown,and pink modules were associated with the crest trait in the E28 stage.Venn analysis of the DEGs and WGCNA showed that 145 and 45 genes are associated between the D42 and E28 stages,respectively.The expression of WNT16,BMP2,SLC35F2,SLC6A15,APOBEC2,ABHD6,TNNC2,MYL1,and TNNI2 were verified by real-time quantitative PCR.This study provides an approach to reveal the molecular mechanisms underlying the crested trait development.
基金supported by Fundamental-Clinical Research Cooperation Fund of Capital Medical University[No.17JL(TTZX)]Capital’s Funds for Health Improvement and Research(No.2022-2-1072).
文摘Objective The prognosis of glioblastoma is poor,and therapy-resistance is largely attributed to intratumor hypoxia.Hyperbaric oxygen(HBO)effectively alleviates hypoxia.However,the sole role of HBO in glioblastoma remains controversial.We previously reported that HBO can promote apoptosis,shorten protrusions,and delay growth of glioblastoma,but the molecular mechanism is unclear.We aimed to test candidate genes in HBO-exposed glioblastoma cells and to analyze their correlation with the survival of glioblastoma patients.Methods Glioblastoma cell lines exposed to repetitive HBO or normobaric air(NBA)were collected for RNA isolation and microarray data analysis.GO analysis,KEGG pathway analysis and survival analysis of the differentially expressed genes(DEGs)were performed.Results HBO not only inhibited hypoxia-inducing genes including CA9,FGF11,PPFIA4,TCAF2 and SLC2A12,but also regulated vascularization by downregulating the expression of COL1A1,COL8A1,COL12A1,RHOJ and FILIP1L,ultimately attenuated hypoxic microenvironment of glioblastoma.HBO attenuated inflammatory microenvironment by reducing the expression of NLRP2,CARD8,MYD88 and CD180.HBO prevented metastasis by downregulating the expression of NTM,CXCL12,CXCL13,CXCR4,CXCR5,CDC42,IGFBP3,IGFBP5,GPC6,MMP19,ADAMTS1,EFEMP1,PTBP3,NF1 and PDCD1.HBO upregulated the expression of BAK1,PPIF,DDIT3,TP53I11 and FAS,whereas downregulated the expression of MDM4 and SIVA1,thus promoting apoptosis.HBO upregulated the expression of CDC25A,MCM2,PCNA,RFC33,DSCC1 and CDC14A,whereas downregulated the expression of ASNS,CDK6,CDKN1B,PTBP3 and MAD2L1,thus inhibiting cell cycle progression.Among these DEGs,17 indicator-genes of HBO prolonging survival were detected.Conclusions HBO is beneficial for glioblastoma.Glioblastoma patients with these predictive indicators may prolong survival with HBO therapy.These potential therapeutic targets especially COL1A1,ADAMTS1 and PTBP3 deserve further validation.
文摘BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candidate genes related to the development of GC and iden-tify potential pathogenic mechanisms through comprehensive bioinformatics analysis.METHODS The Gene Expression Omnibus database was used to obtain the GSE183136 dataset,which includes a total of 135 GC samples.The limma package in R software was employed to identify differentially expressed genes(DEGs).Thereafter,enrichment analyses of Gene Ontology(GO)terms and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were performed for the gene modules using the clusterProfile package in R software.The protein-protein interaction(PPI)networks of target genes were constructed using STRING and visualized by Cytoscape software.The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram.The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves.Moreover,real-time quantitative polymerase chain reaction(RT-qPCR)and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase(GPT)in GC and normal immortalized cell lines.In addition,cell viability,cell cycle distribution,migration and invasion were evaluated by cell counting kit-8,flow cytometry and transwell assays.Furthermore,we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital,Dingli Clinical College of Wenzhou Medical University,The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020.The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients.RESULTS We selected 19214 genes from the GSE183136 dataset,among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value<0.05.In addition,GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction,whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion,vascular smooth muscle contraction and biosynthesis of the different cofactors.Furthermore,PPI networks were constructed based on the various upregulated and downregulated genes,and there were a total 15 upregulated and 10 downregulated hub genes.After a comprehensive analysis,several hub genes,including runt-related transcription factor 2(RUNX2),salmonella pathogenicity island 1(SPI1),lysyl oxidase(LOX),fibrillin 1(FBN1)and GPT,displayed prognostic values.Interestingly,it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells.Furthermore,the expression level of GPT was found to be associated with age,lymph node metastasis,pathological staging and distant metastasis(P<0.05).CONCLUSION RUNX2,SPI1,LOX,FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis.GPT was significantly associated with the prognosis of GC,and its upregulation can effectively inhibit the proliferative,migrative and invasive capabilities of GC cells.