期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
1
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function
2
作者 Ola Ragb Mokhtar Mohamed +1 位作者 Mohamed S.Matbuly Omer Civalek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2193-2217,共25页
Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices.Themathematicalmodel for organic polymer solar cells contains a nonlinear diffusion-reaction partial di... Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices.Themathematicalmodel for organic polymer solar cells contains a nonlinear diffusion-reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation.To solve the problem,Polynomial-based differential quadrature,Sinc,and Discrete singular convolution are combined with block marching techniques.These schemes are employed to reduce the problem to a nonlinear algebraic system.The iterative quadrature technique is used to solve the reduced problem.The obtained results agreed with the previous exact one and the finite element method.Further,the effects of different times,different mobilities,different densities,different geminate pair distances,different geminate recombination rate constants,different generation efficiencies,and supporting conditions on photocurrent have been analyzed.The novelty of this paper is that these schemes for photocurrent transients in organic polymer solar cells have never been presented before,so the results may be useful for improving the performance of solar cells. 展开更多
关键词 Sinc differential quadrature block marching organic solar cells discrete singular convolution
下载PDF
DIFFERENTIAL QUADRATURE FOR AXISYMMETRIC GEOMETRICALLY NONLINEAR ANALYSIS OF CIRCULAR PLATES
3
作者 王鑫伟 周光明 贾德财 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期134-142,共9页
New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin... New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated. 展开更多
关键词 circular plates nonlinear analysis axisymmetric bodies differential quadrature large deflection
下载PDF
ANALYSIS OF NONLINEAR PIEZOELECTRIC CIRCULAR SHALLOW SPHERICAL SHELLS BY DIFFERENTIAL QUADRATURE ELEMENT METHOD
4
作者 王永亮 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期130-136,共7页
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ... The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations. 展开更多
关键词 differential quadrature element method non linearity PIEZOELECTRICITY circular shallow spherical shell
下载PDF
NONLINEAR DYNAMICS OF AXIALLY ACCELERATING VISCOELASTIC BEAMS BASED ON DIFFERENTIAL QUADRATURE 被引量:11
5
作者 Hu Ding Liqun Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期267-275,共9页
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential ... This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam. 展开更多
关键词 nonlinear partial-differential equation numerical solution CHAOS BIFURCATION differential quadrature
下载PDF
DIFFERENTIAL QUADRATURE METHOD TO STABILITY ANALYSIS OF PIPES CONVEYING FLUID WITH SPRING SUPPORT 被引量:14
6
作者 Ni Qiao Huang Yuying 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第4期320-327,共8页
It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several param... It is a new attempt to extend the differential quadrature method(DQM) to stability analysis of the straight and curved centerlinepipes conveying fluid. Emphasis is placed on the study of theinfluences of several parameters on the critical flow velocity.Compared to other methods, this method can more easily deal with thepipe with spring support at its boundaries and asks for much lesscomputing effort while giving ac- ceptable precision in the numericalresults. 展开更多
关键词 pipes conveying fluid differential quadrature method critical flowvelocity
下载PDF
Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates 被引量:6
7
作者 S. A. EFTEKHARI A. A. JAFARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第1期81-98,共18页
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the... This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development. 展开更多
关键词 finite element method (FEM) differential quadrature method (DQM) rectangular plate free and forced vibration buckling analysis
下载PDF
Structural dynamic responses analysis applying differential quadrature method 被引量:5
8
作者 PU Jun-ping ZHENG Jian-jun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1831-1838,共8页
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, com... Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation. 展开更多
关键词 differential quadrature method (DQM) Dynamic response analysis Conservation of energy
下载PDF
Computation of one—dimensional consolidation of double layered ground using differential quadrature method 被引量:6
9
作者 王宏志 陈云敏 黄博 《Journal of Zhejiang University Science》 EI CSCD 2003年第2期195-201,共7页
The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por... The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils. 展开更多
关键词 Double-layered ground One-dimensional consolidat ion differential quadrature method
下载PDF
Differential Quadrature Method for Bending Problem of Plates with Transverse Shear Effects 被引量:4
10
作者 李晶晶 程昌钧 《Journal of Shanghai University(English Edition)》 CAS 2003年第3期228-233,共6页
A differential quadrature (DQ) method for orthotropic plates was proposed based on Reddy' s theory of plates with the effects of the higher-order transverse shear deformations. Wang-Bert's DQ approach was also... A differential quadrature (DQ) method for orthotropic plates was proposed based on Reddy' s theory of plates with the effects of the higher-order transverse shear deformations. Wang-Bert's DQ approach was also further extended to handle the boundary conditions of plates. The computational convergence was studied, and the numerical results were obtained for different grid spacings and compared with the existing results. The results show that the DQ method is fairly reliable and effective. 展开更多
关键词 differential quadrature method higher-order transverse shear deformation effect of grid spacing numerical convergence.
下载PDF
Free vibration and critical speed of moderately thick rotating laminated composite conical shell using generalized differential quadrature method 被引量:3
11
作者 K.DANESHJOU M.TALEBITOOTI R.TALEBITOOTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期437-456,共20页
The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditi... The generalized differential quadrature method (GDQM) is employed to con- sider the free vibration and critical speed of moderately thick rotating laminated compos- ite conical shells with different boundary conditions developed from the first-order shear deformation theory (FSDT). The equations of motion are obtained applying Hamilton's concept, which contain the influence of the centrifugal force, the Coriolis acceleration, and the preliminary hoop stress. In addition, the axial load is applied to the conical shell as a ratio of the global critical buckling load. The governing partial differential equations are given in the expressions of five components of displacement related to the points ly- ing on the reference surface of the shell. Afterward, the governing differential equations are converted into a group of algebraic equations by using the GDQM. The outcomes are achieved considering the effects of stacking sequences, thickness of the shell, rotating velocities, half-vertex cone angle, and boundary conditions. Furthermore, the outcomes indicate that the rate of the convergence of frequencies is swift, and the numerical tech- nique is superior stable. Three comparisons between the selected outcomes and those of other research are accomplished, and excellent agreement is achieved. 展开更多
关键词 generalized differential quadrature method (GDQM) natural frequency rotating conical shell first-order shear deformation theory (FSDT) critical speed
下载PDF
Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method 被引量:2
12
作者 M.MOHAMMADIMEHR M.A.MOHAMMADIMEHR P.DASHTI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期529-554,共26页
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas... The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications. 展开更多
关键词 biaxial and shear nonlinear buckling analysis nonlocal isotropic and orthotropic micro-plate modified couple stress theory (MCST) surface stress effect differential quadrature method (DQM)
下载PDF
Application of Mixed Differential Quadrature Method for Solving the Coupled Two-Dimensional Incompressible Navier-Stokes Equation and Heat Equation 被引量:2
13
作者 A.S.J.AL-SAIF 朱正佑 《Journal of Shanghai University(English Edition)》 CAS 2003年第4期343-351,共9页
The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. T... The traditional differential quadrature method was improved by using theupwind difference scheme for the convective terms to solve the coupled two-dimensionalincompressible Navier-stokes equations and heat equation. The new method was compared with theconventional differential quadrature method in the aspects of convergence and accuracy. The resultsshow that the new method is more accurate, and has better convergence than the conventionaldifferential quadrature method for numerically computing the steady-state solution. 展开更多
关键词 coupled N-S equation and heat equation differential quadrature method upwind difference scheme
下载PDF
DIFFERENTIAL QUADRATURE METHOD FOR BENDING OF ORTHOTROPIC PLATES WITH FINITE DEFORMATION AND TRANSVERSE SHEAR EFFECTS 被引量:1
14
作者 李晶晶 程昌钧 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第8期878-886,共9页
Based on the Reddy's theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadr... Based on the Reddy's theory of plates with the effect of higher-order shear deformations, the governing equations for bending of orthotropic plates with finite deformations were established. The differential quadrature (DQ) method of nonlinear analysis to the problem was presented. New DQ approach, presented by Wang and Bert (DQWB), is extended to handle the multiple boundary conditions of plates. The techniques were also further extended to simplify nonlinear computations. The numerical convergence and comparison of solutions were studied. The results show that the DQ method presented is very reliable and valid. Moreover, the influences of geometric and material parameters as well as the transverse shear deformations on nonlinear bending were investigated. Numerical results show the influence of the shear deformation on the static bending of orthotropic moderately thick plate is significant. 展开更多
关键词 higher-order transverse shear deformation finite deformation differential quadrature method DQWB approach convergence and comparison study of solution
下载PDF
Investigation of the Free Vibrations of Radial Functionally Graded Circular Cylindrical Beams Based on Differential Quadrature Method 被引量:1
15
作者 Xiaojun Huang Liaojun Zhang +2 位作者 Renyu Ge Hanbo Cui Zhedong Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第7期23-41,共19页
In the current research,an effective differential quadrature method(DQM)has been developed to solve natural frequency and vibration modal functions of circular section beams along radial functional gradient.Based on t... In the current research,an effective differential quadrature method(DQM)has been developed to solve natural frequency and vibration modal functions of circular section beams along radial functional gradient.Based on the high-order theory of transverse vibration of circular cross-section beams,lateral displacement equation was reconstructed neglecting circumferential shear stress.Two equations coupled with deflection and rotation angles were derived based on elastic mechanics theory and further simplified into a constant coefficient differential equation with natural frequency as eigenvalue.Then,differential quadrature method was applied to transform the eigenvalue problem of the derived differential equation into a set of algebraic equation eigenvalue problems.Natural frequencies of the free vibrations of cylindrical beams with circular cross-sections were calculated at one time,and corresponding modal functions were solved together.The obtained numerical results indicated that the natural frequencies of functionally graded(FG)circular cylindrical beams obtained using differential quadrature method agreed with the results reported in related literatures.In addition,influences of varying gradient parameters on the modal shapes of circular cylindrical beams were found to be strongly consistent with previous studies.Numerical results further validated the feasibility and accuracy of the developed differential quadrature method in solving the transverse vibration of FG circular cross-section beams. 展开更多
关键词 Functionally graded materials circular cylindrical beams natural frequency modal function differential quadrature method
下载PDF
A Differential Quadrature Based Approach for Volterra Partial Integro-Differential Equation with a Weakly Singular Kernel 被引量:1
16
作者 Siraj-ul-Islam Arshed Ali +1 位作者 Aqib Zafar Iltaf Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期915-935,共21页
Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a... Differential quadrature method is employed by numerous researchers due to its numerical accuracy and computational efficiency,and is mentioned as potential alternative of conventional numerical methods.In this paper,a differential quadrature based numerical scheme is developed for solving volterra partial integro-differential equation of second order having a weakly singular kernel.The scheme uses cubic trigonometric B-spline functions to determine the weighting coefficients in the differential quadrature approximation of the second order spatial derivative.The advantage of this approximation is that it reduces the problem to a first order time dependent integro-differential equation(IDE).The proposed scheme is obtained in the form of an algebraic system by reducing the time dependent IDE through unconditionally stable Euler backward method as time integrator.The scheme is validated using a homogeneous and two nonhomogeneous test problems.Conditioning of the system matrix and numerical convergence of the method are analyzed for spatial and temporal domain discretization parameters.Comparison of results of the present approach with Sinc collocation method and quasi-wavelet method are also made. 展开更多
关键词 Partial integro-differential equation differential quadrature cubic trigonometric B-spline functions weakly singular kernel
下载PDF
Differential Quadrature Method for Steady Flow of an Incompressible Second-Order Viscoelastic Fluid and Heat Transfer Model 被引量:1
17
作者 A.S.J.AL-SAIF 朱正佑 《Journal of Shanghai University(English Edition)》 CAS 2005年第4期298-305,共8页
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation... The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained. 展开更多
关键词 differential quadrature method(DQM) second-order viscoelastic fluid steady flow heat transfer.
下载PDF
Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method 被引量:1
18
作者 S Chakraverty Laxmi Behera 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期218-227,共10页
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Redd... We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio. 展开更多
关键词 differential quadrature method exponentially varying stiffness different beam theories
下载PDF
Differential quadrature time element method for structural dynamics 被引量:3
19
作者 Yu-Feng Xing Jing Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期782-792,共11页
An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordi- nary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller tha... An accurate and efficient differential quadrature time element method (DQTEM) is proposed for solving ordi- nary differential equations (ODEs), the numerical dissipation and dispersion of DQTEM is much smaller than that of the direct integration method of single/multi steps. Two methods of imposing initial conditions are given, which avoids the tediousness when derivative initial conditions are imposed, and the numerical comparisons indicate that the first method, in which the analog equations of initial displacements and velocities are used to directly replace the differential quadra- ture (DQ) analog equations of ODEs at the first and the last sampling points, respectively, is much more accurate than the second method, in which the DQ analog equations of initial conditions are used to directly replace the DQ analog equations of ODEs at the first two sampling points. On the contrary to the conventional step-by-step direct integration schemes, the solutions at all sampling points can be obtained simultaneously by DQTEM, and generally, one differential quadrature time element may be enough for the whole time domain. Extensive numerical comparisons validate the effi- ciency and accuracy of the proposed method. 展开更多
关键词 differential quadrature rule Direct integrationmethod Time element Phase error. Artificial damping
下载PDF
Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method
20
作者 Francesco Tornabene Matteo Viscoti Rossana Dimitri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第12期719-798,共80页
The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the... The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories. 展开更多
关键词 3D honeycomb anisotropic materials differential quadrature method general loads and constraints higher order theories linear static analysis weak formulation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部