This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combin...This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.展开更多
This paper describes a new differential extensometer, which has a baseline rod in suspension with both ends free, and some preliminary test results. Compared with a traditional differential extensometer, which has one...This paper describes a new differential extensometer, which has a baseline rod in suspension with both ends free, and some preliminary test results. Compared with a traditional differential extensometer, which has one end of the baseline rod fixed to the ground, this instrument is less affected by commonly encountered interferences ,including environment vibration, momentary power failure, and power noise.展开更多
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
To investigate the genetic diversity of an edible fungus Pleurotus ferulae, a total of 89 wild samples collected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical lo...To investigate the genetic diversity of an edible fungus Pleurotus ferulae, a total of 89 wild samples collected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical locations in Italy, were analyzed using three DNA fragments including the translation elongation factor(EF1α), the second largest subunit of t he RNA polymerase II(RPB2) and the largest subunit of the RNA polymerase II(RPB1). The results indicated relatively abundant genetic variability in the wild resources of P. ferulae. The analysis of molecular variance(AMOVA) showed that the vast majority of the genetic variation was found within geographical populations. Both the Chinese populations and the Italian populations of P. ferulae displayed a limited genetic differentiation. The degree of differentiation between the Chinese populations and the Italian populations was obviously higher than that between the populations from the same region, and moreover the genetic differentiation among all the tested populations was correlated to the geographical distance. T he phylogeny analyses confirmed that samples from China and Italy belonged to another genetic group separated from Pleurotus eryngii. They were closely related to each other but were clustered according to their geographical origins, which implied the Chinese populations were highly differentiated from the Italian populations because of distance isolation, and the two populations from different regions might be still in the process of allopatric divergence.展开更多
The cultivated soybean(Glycine max(L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb.& Zucc.in growth period structure,by a shorter vegetative phase(V),a prolonged reproductive phase(R) ...The cultivated soybean(Glycine max(L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb.& Zucc.in growth period structure,by a shorter vegetative phase(V),a prolonged reproductive phase(R) and hence a larger R/V ratio.However,the genetic basis of the domestication of soybean from wild materials is unclear.Here,a panel of 123 cultivated and 97 wild accessions were genotyped using a set of 24 presence/absence variants(PAVs) while at the same time the materials were phenotyped with respect to flowering and maturity times at two trial sites located at very different latitudes.The major result of this study showed that variation at PAVs is informative for assessing patterns of genetic diversity in Glycine spp.The genotyping was largely consistent with the taxonomic status,although a few accessions were intermediate between the two major clades identified.Allelic diversity was much higher in the wild germplasm than in the cultivated materials.A significant domestication signal was detected at 11 of the PAVs at 0.01 level.In particular,this study has provided information for revealing the genetic basis of photoperiodism which was a prominent feature for the domestication of soybean.A significant marker-trait association with R/V ratio was detected at 14 of the PAVs,but stripping out population structure reduced this to three.These results will provide markers information for further finding of R/V related genes that can help to understand the domestication process and introgress novel genes in wild soybean to broaden the genetic base of modern soybean cultivars.展开更多
The Qiongdongnan Basin has the first proprietary high-yield gas field in deep-water areas of China and makes the significant breakthroughs in oil and gas exploration.The central depression belt of deep-water area in t...The Qiongdongnan Basin has the first proprietary high-yield gas field in deep-water areas of China and makes the significant breakthroughs in oil and gas exploration.The central depression belt of deep-water area in the Qiongdongnan Basin is constituted by five sags,i.e.Ledong Sag,Lingshui Sag,Songnan Sag,Baodao Sag and Changchang Sag.It is a Cenozoic extensional basin with the basement of pre-Paleogene as a whole.The structural research in central depression belt of deep-water area in the Qiongdongnan Basin has the important meaning in solving the basic geological problems,and improving the exploration of oil and gas of this basin.The seismic interpretation and structural analysis in this article was operated with the 3D seismic of about 1.5×104 km2 and the 2D seismic of about 1×104 km.Eighteen sampling points were selected to calculate the fault activity rates of the No.2 Fault.The deposition rate was calculated by the ratio of residual formation thickness to deposition time scale.The paleo-geomorphic restoration was obtained by residual thickness method and impression method.The faults in the central depression belt of deep-water area of this basin were mainly developed during Paleogene,and chiefly trend in NE–SW,E–W and NW–SE directions.The architectures of these sags change regularly from east to west:the asymmetric grabens are developed in the Ledong Sag,western Lingshui Sag,eastern Baodao Sag,and western Changchang Sag;half-grabens are developed in the Songnan Sag,eastern Lingshui Sag,and eastern Changchang Sag.The tectonic evolution history in deep-water area of this basin can be divided into three stages,i.e.faulted-depression stage,thermal subsidence stage,and neotectonic stage.The Ledong-Lingshui sags,near the Red River Fault,developed large-scale sedimentary and subsidence by the uplift of Qinghai-Tibet Plateau during neotectonic stage.The Baodao-Changchang sags,near the northwest oceanic sub-basin,developed the large-scale magmatic activities and the transition of stress direction by the expansion of the South China Sea.The east sag belt and west sag belt of the deep-water area in the Qiongdongnan Basin,separated by the ancient Songnan bulge,present prominent differences in deposition filling,diaper genesis,and sag connectivity.The west sag belt has the advantages in high maturity,well-developed fluid diapirs and channel sand bodies,thus it has superior conditions for oil and gas migration and accumulation.The east sag belt is qualified by the abundant resources of oil and gas.The Paleogene of Songnan low bulge,located between the west sag belt and the east sag belt,is the exploration potential.The YL 8 area,located in the southwestern high part of the Songnan low bulge,is a favorable target for the future gas exploration.The Well 8-1-1 was drilled in August 2018 and obtained potential business discovery,and the Well YL8-3-1 was drilled in July 2019 and obtained the business discovery.展开更多
The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation ...The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.展开更多
Seifert's conjecture has been solved and other interesting problems in difFerential topology have been discussed. Certain properties of vector fields on S2 and 53 have been achieved while one treats S2 and S3 as s...Seifert's conjecture has been solved and other interesting problems in difFerential topology have been discussed. Certain properties of vector fields on S2 and 53 have been achieved while one treats S2 and S3 as submanifolds of R3 and R4 respectively. The difFerential structure we consider here is the usual one in mathematical analysis.展开更多
Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due...Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure's capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47(0.00013?),and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.展开更多
Simple saccharides have a variety of biological functions,but their structural diversity and inherent structural features pose a major challenge for rapid analysis.In this work,we developed a derivative-free and ion m...Simple saccharides have a variety of biological functions,but their structural diversity and inherent structural features pose a major challenge for rapid analysis.In this work,we developed a derivative-free and ion mobility-free method for the rapid analysis of monosaccharides and disaccharides using paper spray tandem mass spectrometry.Trimeric cluster ions consisting of saccharide analytes,ligands and transition metal ions are used as precursor ions.We defined the R-value as the ratio of the intensity of the product ion that loses one molecule of ligand over the intensity of the product ion that loses one molecule of saccharide via collision induced dissociation(CID).The species and conformation of simple saccharides can be easily differentiated by calculating this R-value.With the capability of directly analyzing clinical samples using paper spray ionization,our method can be used to rapidly quantify the molar ratio of galactose to glucose in dried plasma samples to aid in the diagnosis of galactosemia.The analytical strategy provided herein has good potential to be applied to a wide range of saccharide analysis applications in the future.展开更多
Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as ...Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as inactive sites,dissolution,and oxidation,amongst others.Herein,we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap.The advanced operando synchrotron radiation Fourier transform infrared(SR-FTIR)spectroscopy,synchrotron radiation photoelectron spectroscopy(SRPES)depth detection and differential X-ray absorption fine structure(D-XAFS)spectrum jointly point out that some oxidized sulfur species(SO_(4)^(2-))will selfoptimize new Ni–S bonds during OER process.Such amazing anionic self-optimization(ASO)behavior has never been observed in the OER process.Subsequently,the optimization-derived component shows a significantly improved electrocatalytic performance(activity,stability,etc.)compared to reference catalyst Ni(OH)_(2).Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst,and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER,respectively.This work demonstrates the vital role of anions in the electrochemical process,which will open up new perspectives for understanding OER and provide some new ideas in related fields(especially catalysis and chemistry).展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA-040405)the National Natural Science Foundation of China(Nos.61101049,61201078,61302032,61327810)
文摘This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.
基金supported by the Director Foundation of Institute of Seismology,CEA(IS200726020)
文摘This paper describes a new differential extensometer, which has a baseline rod in suspension with both ends free, and some preliminary test results. Compared with a traditional differential extensometer, which has one end of the baseline rod fixed to the ground, this instrument is less affected by commonly encountered interferences ,including environment vibration, momentary power failure, and power noise.
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
基金funded by the National Basic Research Program of China (2014CB138305)the China Agriculture Research System (CARS24)
文摘To investigate the genetic diversity of an edible fungus Pleurotus ferulae, a total of 89 wild samples collected from six geographical locations in the Xinjiang Uygur Autonomous Region of China and two geographical locations in Italy, were analyzed using three DNA fragments including the translation elongation factor(EF1α), the second largest subunit of t he RNA polymerase II(RPB2) and the largest subunit of the RNA polymerase II(RPB1). The results indicated relatively abundant genetic variability in the wild resources of P. ferulae. The analysis of molecular variance(AMOVA) showed that the vast majority of the genetic variation was found within geographical populations. Both the Chinese populations and the Italian populations of P. ferulae displayed a limited genetic differentiation. The degree of differentiation between the Chinese populations and the Italian populations was obviously higher than that between the populations from the same region, and moreover the genetic differentiation among all the tested populations was correlated to the geographical distance. T he phylogeny analyses confirmed that samples from China and Italy belonged to another genetic group separated from Pleurotus eryngii. They were closely related to each other but were clustered according to their geographical origins, which implied the Chinese populations were highly differentiated from the Italian populations because of distance isolation, and the two populations from different regions might be still in the process of allopatric divergence.
基金supported by the Agricultural Science and Technology Innovation Program(ASTIP) of Chinese Academy of Agricultural Sciences and the Platform of National Crop Germplasm Resources of China(nos.2012-004 and 2013-004)
文摘The cultivated soybean(Glycine max(L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb.& Zucc.in growth period structure,by a shorter vegetative phase(V),a prolonged reproductive phase(R) and hence a larger R/V ratio.However,the genetic basis of the domestication of soybean from wild materials is unclear.Here,a panel of 123 cultivated and 97 wild accessions were genotyped using a set of 24 presence/absence variants(PAVs) while at the same time the materials were phenotyped with respect to flowering and maturity times at two trial sites located at very different latitudes.The major result of this study showed that variation at PAVs is informative for assessing patterns of genetic diversity in Glycine spp.The genotyping was largely consistent with the taxonomic status,although a few accessions were intermediate between the two major clades identified.Allelic diversity was much higher in the wild germplasm than in the cultivated materials.A significant domestication signal was detected at 11 of the PAVs at 0.01 level.In particular,this study has provided information for revealing the genetic basis of photoperiodism which was a prominent feature for the domestication of soybean.A significant marker-trait association with R/V ratio was detected at 14 of the PAVs,but stripping out population structure reduced this to three.These results will provide markers information for further finding of R/V related genes that can help to understand the domestication process and introgress novel genes in wild soybean to broaden the genetic base of modern soybean cultivars.
基金The National Natural Science Foundation of China under contract No.91528303the National Science and Technology Major Project under contract Nos 2016ZX05026,2011ZX05025 and 2008ZX05025the National Basic Research Program(973 Program)of China under contract No.2009CB219400
文摘The Qiongdongnan Basin has the first proprietary high-yield gas field in deep-water areas of China and makes the significant breakthroughs in oil and gas exploration.The central depression belt of deep-water area in the Qiongdongnan Basin is constituted by five sags,i.e.Ledong Sag,Lingshui Sag,Songnan Sag,Baodao Sag and Changchang Sag.It is a Cenozoic extensional basin with the basement of pre-Paleogene as a whole.The structural research in central depression belt of deep-water area in the Qiongdongnan Basin has the important meaning in solving the basic geological problems,and improving the exploration of oil and gas of this basin.The seismic interpretation and structural analysis in this article was operated with the 3D seismic of about 1.5×104 km2 and the 2D seismic of about 1×104 km.Eighteen sampling points were selected to calculate the fault activity rates of the No.2 Fault.The deposition rate was calculated by the ratio of residual formation thickness to deposition time scale.The paleo-geomorphic restoration was obtained by residual thickness method and impression method.The faults in the central depression belt of deep-water area of this basin were mainly developed during Paleogene,and chiefly trend in NE–SW,E–W and NW–SE directions.The architectures of these sags change regularly from east to west:the asymmetric grabens are developed in the Ledong Sag,western Lingshui Sag,eastern Baodao Sag,and western Changchang Sag;half-grabens are developed in the Songnan Sag,eastern Lingshui Sag,and eastern Changchang Sag.The tectonic evolution history in deep-water area of this basin can be divided into three stages,i.e.faulted-depression stage,thermal subsidence stage,and neotectonic stage.The Ledong-Lingshui sags,near the Red River Fault,developed large-scale sedimentary and subsidence by the uplift of Qinghai-Tibet Plateau during neotectonic stage.The Baodao-Changchang sags,near the northwest oceanic sub-basin,developed the large-scale magmatic activities and the transition of stress direction by the expansion of the South China Sea.The east sag belt and west sag belt of the deep-water area in the Qiongdongnan Basin,separated by the ancient Songnan bulge,present prominent differences in deposition filling,diaper genesis,and sag connectivity.The west sag belt has the advantages in high maturity,well-developed fluid diapirs and channel sand bodies,thus it has superior conditions for oil and gas migration and accumulation.The east sag belt is qualified by the abundant resources of oil and gas.The Paleogene of Songnan low bulge,located between the west sag belt and the east sag belt,is the exploration potential.The YL 8 area,located in the southwestern high part of the Songnan low bulge,is a favorable target for the future gas exploration.The Well 8-1-1 was drilled in August 2018 and obtained potential business discovery,and the Well YL8-3-1 was drilled in July 2019 and obtained the business discovery.
基金Supported by the China National Science and Technology Major Project(2016ZX05004-001)
文摘The paleotectonic pattern,lithofacies paleogeographic features,sedimentary evolution and its controlling effects on hydrocarbon accumulation assemblages during the depositional period of the Sinian Dengying Formation in middle-upper Yangtze region were investigated based on outcrops,drilling,log and seismic data.The study shows that,(1)Affected by the breakup of the Rodinia supercontinent,the middle and upper Yangtze areas were in extensional tectonic environment during the depositional period of Dengying Formation.The carbonate platform was structurally differentiated.Intra-platform depressions controlled by syndepositional faults developed,forming a tectonic-paleogeographic pattern of"three platforms with two depressions".(2)During the depositional period of the first and second members of the Dengying Formation,rimmed platforms and intra-platform fault depressions developed in upper Yangtze area and isolated platform developed in middle Yangtze area,and there was the Xuanhan-Kaijiang ancient land block in eastern Sichuan.The depositional period of the third member of the Dengying Formation is the transformation period of tectonic-paleogeographic pattern,when a set of shallow water shelf sediment rich in mud was deposited due to transgression on the background of the eroded terrain formed in EpisodeⅠof Tongwan Movement.The sediment of the fourth member of the Dengying Formation inherited the paleogeographic pattern of the first and second members of the Dengying Formation in general,but the Deyang-Anyue intra-platform fault depression further expanded,and the middle Yangtze platform evolved into two separated platforms.(3)Tectonic-sedimentary differentiation and evolution of carbonate platform in the Sinian gave rise to two types of accumulation assemblages with wide distribution and great exploration potential,which are platform margin and intra-platform.
文摘Seifert's conjecture has been solved and other interesting problems in difFerential topology have been discussed. Certain properties of vector fields on S2 and 53 have been achieved while one treats S2 and S3 as submanifolds of R3 and R4 respectively. The difFerential structure we consider here is the usual one in mathematical analysis.
基金Project supported by the National Natural Basic Research Program(973)of China(No.2012CB934104)the National Natural Science Foundation of China(No.61071037)the Natural Science Foundation of Heilongjiang Province,China(No.F201418)
文摘Differential capacitive detection has been widely used in the displacement measurement of the proof mass of vibratory gyroscopes, but it did not achieve high resolutions in angle detection of rotational gyroscopes due to restrictions in structure, theory, and interface circuitry. In this paper, a differential capacitive detection structure is presented to measure the tilt angle of the rotor of a novel rotational gyroscope. A mathematical model is built to study how the structure's capacitance changes with the rotor tilt angles. The relationship between differential capacitance and structural parameters is analyzed, and preliminarily optimized size parameters are adopted. A lownoise readout interface circuit is designed to convert differential capacitance changes to voltage signals. Rate table test results of the gyroscope show that the smallest resolvable tilt angle of the rotor is less than 0.47(0.00013?),and the nonlinearity of the angle detection structure is 0.33%, which can be further improved. The results indicate that the proposed detection structure and the circuitry are helpful for a high accuracy of the gyroscope.
基金supported by NNSF China(No.82072247)Research Projects of Beijing University of Chinese Medicine(Nos.2021-JYB-XJSJJ-001,XJYS21005 and 2021-SYJS-007)。
文摘Simple saccharides have a variety of biological functions,but their structural diversity and inherent structural features pose a major challenge for rapid analysis.In this work,we developed a derivative-free and ion mobility-free method for the rapid analysis of monosaccharides and disaccharides using paper spray tandem mass spectrometry.Trimeric cluster ions consisting of saccharide analytes,ligands and transition metal ions are used as precursor ions.We defined the R-value as the ratio of the intensity of the product ion that loses one molecule of ligand over the intensity of the product ion that loses one molecule of saccharide via collision induced dissociation(CID).The species and conformation of simple saccharides can be easily differentiated by calculating this R-value.With the capability of directly analyzing clinical samples using paper spray ionization,our method can be used to rapidly quantify the molar ratio of galactose to glucose in dried plasma samples to aid in the diagnosis of galactosemia.The analytical strategy provided herein has good potential to be applied to a wide range of saccharide analysis applications in the future.
基金supported in part by the National Key R&D Program of China(2017YFA0303500)the National Natural Science Foundation of China(U1932201,21727801,and 51902303)+4 种基金the National Natural Science Foundation of China-Ministry of Foreign Affairs and International Cooperation of Italy(51861135202)CAS International Partnership Program(211134KYSB20190063)Key Research Program of Frontier Sciences(QYZDB-SSW-SLH018)the University of Science and Technology of China start-up fundCAS Interdisciplinary Innovation Team。
文摘Broadly,the oxygen evolution reaction(OER)has been deeply understood as a significant part of energy conversion and storage.Nevertheless,the anions in the OER catalysts have been neglected for various reasons such as inactive sites,dissolution,and oxidation,amongst others.Herein,we applied a model catalyst s-Ni(OH)2 to track the anionic behavior in the catalyst during the electrochemical process to fill this gap.The advanced operando synchrotron radiation Fourier transform infrared(SR-FTIR)spectroscopy,synchrotron radiation photoelectron spectroscopy(SRPES)depth detection and differential X-ray absorption fine structure(D-XAFS)spectrum jointly point out that some oxidized sulfur species(SO_(4)^(2-))will selfoptimize new Ni–S bonds during OER process.Such amazing anionic self-optimization(ASO)behavior has never been observed in the OER process.Subsequently,the optimization-derived component shows a significantly improved electrocatalytic performance(activity,stability,etc.)compared to reference catalyst Ni(OH)_(2).Theoretical calculation further suggests that the ASO process indeed derives a thermodynamically stable structure of the OER catalyst,and then gives its superb catalytic performance by optimizing the thermodynamic and kinetic processes in the OER,respectively.This work demonstrates the vital role of anions in the electrochemical process,which will open up new perspectives for understanding OER and provide some new ideas in related fields(especially catalysis and chemistry).