期刊文献+
共找到380篇文章
< 1 2 19 >
每页显示 20 50 100
Self-adapting control parameters modifieddifferential evolution for trajectoryplanning of manipulators 被引量:12
1
作者 Lianghong WU Yaonan WANG Shaowu ZHOU 《控制理论与应用(英文版)》 EI 2007年第4期365-373,共9页
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat... Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed. 展开更多
关键词 self-adapting control parameters differential evolution Redundant manipulator Trajectory planning
下载PDF
An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation 被引量:12
2
作者 胡春平 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第2期232-240,共9页
A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to... A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained. 展开更多
关键词 differential evolution immune system evolutionary computation parameter estimation
下载PDF
Parameter estimation for chaotic systems with and without noise using differential evolution-based method 被引量:1
3
作者 李念强 潘炜 +3 位作者 闫连山 罗斌 徐明峰 江宁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期72-77,共6页
We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able... We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey Glass system and the Lorenz system are also presented. 展开更多
关键词 chaotic system differential evolution noise parameter estimation
下载PDF
Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization 被引量:1
4
作者 范勤勤 王循华 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2227-2237,共11页
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat... A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application. 展开更多
关键词 harmony search differential evolution optimization CO-evolution self-adaptive control parameter dynamic optimization
下载PDF
Hybrid Differential Evolution for Estimation of Kinetic Parameters for Biochemical Systems 被引量:1
5
作者 ZHAO Chao XU Qiaoling LIN Siming LI Xuelai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期155-162,共8页
Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te... Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model. 展开更多
关键词 parameter estimation kinetic model hybrid differential evolution Gauss-Newton feed batch fermentor
下载PDF
Parameter Estimation of Multi-component Chirp Signal Based on Differential Evolution 被引量:3
6
作者 ZHAO Haoran MENG Fankuo QIAO Liyan 《Instrumentation》 2017年第2期34-43,共10页
Chirp signals show energy aggregation in the fractional Fourier domain(FrFD) w hich can be used to estimate the parameter of the signals. In this paper,a parameter estimation method for multi-component chirp signal w ... Chirp signals show energy aggregation in the fractional Fourier domain(FrFD) w hich can be used to estimate the parameter of the signals. In this paper,a parameter estimation method for multi-component chirp signal w hich corrupted by w hite Gaussian noise is proposed based on the discrete fractional Fourier transform(DFrFT) and the differential evolution( DE) algorithm. The proposed algorithm uses the DE algorithm instead of the conventional fine search algorithm to detect the peak of the signals in the FrFD. The paper simulated the influence of the noise and the resolution of the proposed algorithm. The results of the simulation show the proposed method does not only improve the estimation accuracy of the peak coordinate,but also reduces time consuming. 展开更多
关键词 Chirp Signal Fractional Fourier Transform parameter Estimation differential evolution
下载PDF
Self-adapting Scalable Differential Evolution Algorithm
7
作者 刘荣辉 郑建国 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期384-390,共7页
Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable D... Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization. 展开更多
关键词 differential evolution (DE) SCALABLE self-adapting parameter control function optimization
下载PDF
Design of PID controller with incomplete derivation based on differential evolution algorithm 被引量:16
8
作者 Wu Lianghong Wang Yaonan +1 位作者 Zhou Shaowu Tan Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期578-583,共6页
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID co... To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system. 展开更多
关键词 PID controller incomplete derivation differential evolution parameter tuning.
下载PDF
Medical Grabbing Servo System with Friction Compensation Based on the Differential Evolution Algorithm 被引量:4
9
作者 Yeming Zhang Kaimin Li +2 位作者 Meng Xu Junlei Liu Hongwei Yue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期316-330,共15页
This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation... This paper introduces a pneumatic finger cylinder servo control system for medical grabbing.First,according to the physical structure of the proportional directional valve and the pneumatic cylinder,the state equation of the gas in the servo system was obtained.The Stribeck friction compensation model of a pneumatic finger cylinder controlled by a proportional valve was established and the experimental platform built.To allow the system output to bet-ter track the change in the input signal,the flow-gain compensation method was adopted.On this basis,a friction compensation control strategy based on a differential evolution algorithm was proposed and applied to the position control system of a pneumatic finger cylinder.Finally,the strategy was compared with the traditional proportional derivative(PD)strategy and that with friction compensation.The experimental results showed that the position accuracy of the finger cylinder position control system can be improved by using the friction compensation strategy based on the differential evolution algorithm to optimize the PD parameters. 展开更多
关键词 Position control Friction compensation differential evolution parameter optimization
下载PDF
Multiple Elite Individual Guided Piecewise Search-Based Differential Evolution 被引量:1
10
作者 Shubham Gupta Shitu Singh +2 位作者 Rong Su Shangce Gao Jagdish Chand Bansal 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期135-158,共24页
The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation oper... The differential evolution(DE)algorithm relies mainly on mutation strategy and control parameters'selection.To take full advantage of top elite individuals in terms of fitness and success rates,a new mutation operator is proposed.The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages.The proposed DE variant,MIDE,performs the evolution in a piecewise manner,i.e.,after every predefined evolutionary stages,MIDE adjusts its settings to enrich its diversity skills.The performance of the MIDE is validated on two different sets of benchmarks:CEC 2014 and CEC 2017(special sessions&competitions on real-parameter single objective optimization)using different performance measures.In the end,MIDE is also applied to solve constrained engineering problems.The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments. 展开更多
关键词 Control parameters differential evolution metaheuristic algorithms mutation operator
下载PDF
Convergence Track Based Adaptive Differential Evolution Algorithm(CTbADE)
11
作者 Qamar Abbas Khalid Mahmood Malik +4 位作者 Abdul Khader Jilani Saudagar Muhammad Badruddin Khan Mozaherul Hoque Abul Hasanat Abdullah AlTameem Mohammed AlKhathami 《Computers, Materials & Continua》 SCIE EI 2022年第7期1229-1250,共22页
One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adapti... One of the challenging problems with evolutionary computing algorithms is to maintain the balance between exploration and exploitation capability in order to search global optima.A novel convergence track based adaptive differential evolution(CTbADE)algorithm is presented in this research paper.The crossover rate and mutation probability parameters in a differential evolution algorithm have a significant role in searching global optima.A more diverse population improves the global searching capability and helps to escape from the local optima problem.Tracking the convergence path over time helps enhance the searching speed of a differential evolution algorithm for varying problems.An adaptive powerful parameter-controlled sequences utilized learning period-based memory and following convergence track over time are introduced in this paper.The proposed algorithm will be helpful in maintaining the equilibrium between an algorithm’s exploration and exploitation capability.A comprehensive test suite of standard benchmark problems with different natures,i.e.,unimodal/multimodal and separable/non-separable,was used to test the convergence power of the proposed CTbADE algorithm.Experimental results show the significant performance of the CTbADE algorithm in terms of average fitness,solution quality,and convergence speed when compared with standard differential evolution algorithms and a few other commonly used state-of-the-art algorithms,such as jDE,CoDE,and EPSDE algorithms.This algorithm will prove to be a significant addition to the literature in order to solve real time problems and to optimize computationalmodels with a high number of parameters to adjust during the problem-solving process. 展开更多
关键词 differential evolution function optimization convergence track parameter sequence adaptive control parameters
下载PDF
Strengthened Initialization of Adaptive Cross-Generation Differential Evolution
12
作者 Wei Wan Gaige Wang Junyu Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1495-1516,共22页
Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its conv... Adaptive Cross-Generation Differential Evolution(ACGDE)is a recently-introduced algorithm for solving multiobjective problems with remarkable performance compared to other evolutionary algorithms(EAs).However,its convergence and diversity are not satisfactory compared with the latest algorithms.In order to adapt to the current environment,ACGDE requires improvements in many aspects,such as its initialization and mutant operator.In this paper,an enhanced version is proposed,namely SIACGDE.It incorporates a strengthened initialization strategy and optimized parameters in contrast to its predecessor.These improvements make the direction of crossgeneration mutation more clearly and the ability of searching more efficiently.The experiments show that the new algorithm has better diversity and improves convergence to a certain extent.At the same time,SIACGDE outperforms other state-of-the-art algorithms on four metrics of 24 test problems. 展开更多
关键词 differential evolution(DE) multi-objective optimization(MO) opposition-based learning parameter adaptation
下载PDF
Covariance Matrix Learning Differential Evolution Algorithm Based on Correlation
13
作者 Sainan Yuan Quanxi Feng 《International Journal of Intelligence Science》 2021年第1期17-30,共14页
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g... Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span> 展开更多
关键词 differential evolution Algorithm CORRELATION Covariance Matrix parameter self-adaptive Technique
下载PDF
Differential Evolution with Adaptive Mutation and Parameter Control Using Lvy Probability Distribution 被引量:2
14
作者 贺仁杰 杨振宇 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第5期1035-1055,共21页
Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation. In spite of many advantages such as conceptual simplicity, high efficiency a... Differential evolution (DE) has become a very popular and effective global optimization algorithm in the area of evolutionary computation. In spite of many advantages such as conceptual simplicity, high efficiency and ease of use, DE has two main components, i.e., mutation scheme and parameter control, which significantly influence its performance. In this paper we intend to improve the performance of DE by using carefully considered strategies for both of the two components. We first design an adaptive mutation scheme, which adaptively makes use of the bias of superior individuals when generating new solutions. Although introducing such a bias is not a new idea, existing methods often use heuristic rules to control the bias. They can hardly maintain the appropriate balance between exploration and exploitation during the search process, because the preferred bias is often problem and evolution-stage dependent. Instead of using any fixed rule, a novel strategy is adopted in the new adaptive mutation scheme to adjust the bias dynamically based on the identified local fitness landscape captured by the current population. As for the other component, i.e., parameter control, we propose a mechanism by using the Levy probability distribution to adaptively control the scale factor F of DE. For every mutation in each generation, an Fi is produced from one of four different Levy distributions according to their historical performance. With the adaptive mutation scheme and parameter control using Levy distribution as the main components, we present a new DE variant called Levy DE (LDE). Experimental studies were carried out on a broad range of benchmark functions in global numerical optimization. The results show that LDE is very competitive, and both of the two main components have contributed to its overall performance. The scalability of LDE is also discussed by conducting experiments on some selected benchmark functions with dimensions from 30 to 200. 展开更多
关键词 differential evolution global optimization L6vy distribution parameter adaptation
原文传递
Parameters Identification of Tunnel Jointed Surrounding Rock Based on Gaussian Process Regression Optimized by Difference Evolution Algorithm 被引量:1
15
作者 Annan Jiang Xinping Guo +1 位作者 Shuai Zheng Mengfei Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1177-1199,共23页
Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint mode... Due to the geological body uncertainty,the identification of the surrounding rock parameters in the tunnel construction process is of great significance to the calculation of tunnel stability.The ubiquitous-joint model and three-dimensional numerical simulation have advantages in the parameter identification of surrounding rock with weak planes,but conventional methods have certain problems,such as a large number of parameters and large time consumption.To solve the problems,this study combines the orthogonal design,Gaussian process(GP)regression,and difference evolution(DE)optimization,and it constructs the parameters identification method of the jointed surrounding rock.The calculation process of parameters identification of a tunnel jointed surrounding rock based on the GP optimized by the DE includes the following steps.First,a three-dimensional numerical simulation based on the ubiquitous-joint model is conducted according to the orthogonal and uniform design parameters combing schemes,where the model input consists of jointed rock parameters and model output is the information on the surrounding rock displacement and stress.Then,the GP regress model optimized by DE is trained by the data samples.Finally,the GP model is integrated into the DE algorithm,and the absolute differences in the displacement and stress between calculated and monitored values are used as the objective function,while the parameters of the jointed surrounding rock are used as variables and identified.The proposed method is verified by the experiments with a joint rock surface in the Dadongshan tunnel,which is located in Dalian,China.The obtained calculation and analysis results are as follows:CR=0.9,F=0.6,NP=100,and the difference strategy DE/Best/1 is recommended.The results of the back analysis are compared with the field monitored values,and the relative error is 4.58%,which is satisfactory.The algorithm influencing factors are also discussed,and it is found that the local correlation coefficientσf and noise standard deviationσn affected the prediction accuracy of the GP model.The results show that the proposed method is feasible and can achieve high identification precision.The study provides an effective reference for parameter identification of jointed surrounding rock in a tunnel. 展开更多
关键词 Gauss process regression differential evolution algorithm ubiquitous-joint model parameter identification orthogonal design
下载PDF
Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization 被引量:3
16
作者 Guo-Han Lin Jing Zhang Zhao-Hua Liu 《International Journal of Automation and computing》 EI CSCD 2018年第1期103-114,共12页
In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC... In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays. 展开更多
关键词 Particle swarm optimization (PSO) active disturbance rejection control (ADRC) differential evolution algorithm chaoticmap parameter tuning.
原文传递
Calibration and uniqueness analysis of microparameters for DEM cohesive granular material 被引量:4
17
作者 Songtao Ji Jurij Karlovšek 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第1期121-136,共16页
The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus a... The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus and Poisson’s ratio,can be calibrated to high accuracy.The best calibration accuracy could reach the sum of relative errors RE_(sum)<0.1%.Most calibrations can be achieved with RE_(sum)<5%within hours or RE_(sum)<1%within 2 days.Based on the calibrated results,microparameters uniqueness analysis was carried out to reveal the correlation between microparameters and the macroscopic mechanical behaviour of material:(1)microparameters effective modulus,tensile strength and normal-to-shear stiffness ratio control the elastic behaviour and stable crack growth,(2)microparameters cohesion and friction angles present a negative linear correlation that controls the axial strain and lateral strain prior to the peak stress,and(3)microparameters friction coefficient controls shear crack friction and slip mainly refers to the unstable crack behaviour.Consideration of more macroparameters to regulate the material mechanical behaviour that is dominated by shear crack and slip motion is highlighted for future study.The DE calibration method is expected to serve as an alternative method to calibrate the DEM cohesive granular material to its peak strength. 展开更多
关键词 Discrete element method(DEM) Particle flow code(PFC) differential evolution(DE) parameter calibration Uniqueness analysis Post-peak behaviour
下载PDF
Design of mixed H-two/H-infinity optimal control systems using multiobjective differential evolution algorithm 被引量:2
18
作者 Lianghong WU Yaonan WANG +1 位作者 Shaowu ZHOU Xiaofang YUAN 《控制理论与应用(英文版)》 EI CSCD 2013年第3期521-528,共8页
In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building... In this paper, the mixed H-two/H-infinity control synthesis problem is stated as a multiobjective opti-mization problem, with objectives of minimizing the H-two and H-infinity norms simultaneously. Instead of building a LMIs-based synthesis algorithm, a self-adaptive control parameter multiobjective differential evolution algorithm is developed directly in the controller parameters space. In the case of systems with polytopic uncertainties, the worst case norm computation is formulated as an implicit optimization problem, and the proposed self-adaptive differential evolution is employed to calculate the worst case H-two and H-infinity norms. The numerical examples illustrate the power and validity of the proposed approach for the mixed H-two/H-infinity control multiobjective optimal design. 展开更多
关键词 Mixed H-two/H-infinity control Polytopic uncertainties parameter self-adaptive differential evolution Multiobjective optimization
原文传递
Differential Evolution with Level-Based Learning Mechanism 被引量:3
19
作者 Kangjia Qiao Jing Liang +3 位作者 Boyang Qu Kunjie Yu Caitong Yue Hui Song 《Complex System Modeling and Simulation》 2022年第1期35-58,共24页
To address complex single objective global optimization problems,a new Level-Based Learning Differential Evolution(LBLDE)is developed in this study.In this approach,the whole population is sorted from the best to the ... To address complex single objective global optimization problems,a new Level-Based Learning Differential Evolution(LBLDE)is developed in this study.In this approach,the whole population is sorted from the best to the worst at the beginning of each generation.Then,the population is partitioned into multiple levels,and different levels are used to exert different functions.In each level,a control parameter is used to select excellent exemplars from upper levels for learning.In this case,the poorer individuals can choose more learning exemplars to improve their exploration ability,and excellent individuals can directly learn from the several best individuals to improve the quality of solutions.To accelerate the convergence speed,a difference vector selection method based on the level is developed.Furthermore,specific crossover rates are assigned to individuals at the lowest level to guarantee that the population can continue to update during the later evolutionary process.A comprehensive experiment is organized and conducted to obtain a deep insight into LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants. 展开更多
关键词 level-based learning differential evolution(DE) parameter adaptation exemplar selection
原文传递
Adaptive Dimensional Learning with a Tolerance Framework for the Differential Evolution Algorithm 被引量:2
20
作者 Wei Li Xinqiang Ye +1 位作者 Ying Huang Soroosh Mahmoodi 《Complex System Modeling and Simulation》 2022年第1期59-77,共19页
The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE i... The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE is proposed.The population is divided into an elite subpopulation,an ordinary subpopulation,and an inferior subpopulation according to the fitness values.The ordinary and elite subpopulations are used to maintain the current evolution state and to guide the evolution direction of the population,respectively.The inferior subpopulation learns from the elite subpopulation through the dimensional learning strategy.If the global optimum is not improved in a specified number of iterations,a tolerance mechanism is applied.Under the tolerance mechanism,the inferior and elite subpopulations implement the restart strategy and the reverse dimensional learning strategy,respectively.In addition,the individual status and algorithm status are used to adaptively adjust the control parameters.To evaluate the performance of the proposed algorithm,six state-of-the-art DE algorithm variants are compared on the benchmark functions.The results of the simulation show that the proposed algorithm outperforms other variant algorithms regarding function convergence rate and solution accuracy. 展开更多
关键词 differential evolution(DE) tolerance mechanism dimensional learning parameter adaptation continuous optimization
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部