Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te...Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.展开更多
This paper studies a bounded discriminating domain for hybrid linear differential game with two players and two targets using viability theory. First of all, we prove that the convex hull of a closed set is also a dis...This paper studies a bounded discriminating domain for hybrid linear differential game with two players and two targets using viability theory. First of all, we prove that the convex hull of a closed set is also a discriminating domain if the set is a discriminating domain. Secondly, in order to determine that a bounded polyhedron is a discriminating domain, we give a result that it only needs to verify that the extreme points of the polyhedron meet the viability conditions. The difference between our result and the existing ones is that our result just needs to verify the finite points (extreme points) and the existing ones need to verify all points in the bounded polyhedron.展开更多
Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or n...Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.展开更多
In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform...In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems.展开更多
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transform...This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.展开更多
This study was carried out to optimize the culture media for the micropropagation of Taxodium hybrid Zhongshanshan( T. distichum × T. mucronatum).Using the tender stems of Zhongshanshan 301 as the explants,the ...This study was carried out to optimize the culture media for the micropropagation of Taxodium hybrid Zhongshanshan( T. distichum × T. mucronatum).Using the tender stems of Zhongshanshan 301 as the explants,the effects of NAA,6-BA,IBA and KT on the induction of differentiation,proliferation and rooting were evaluated on MS or 1/2 MS medium. The results showed that Zhongshanshan can be proliferated via tissue culture. The combined use of NAA and 6-BA in MS medium greatly promoted the differentiation of Zhongshanshan explants,and the optimal medium was MS + 0. 2 mg/L NAA + 0. 4 mg/L6-BA. The optimal medium for the proliferation of differentiated buds was MS + 0. 3 mg/L NAA + 0. 4 mg/L 6-BA,on which the proliferation rate was up to 3. 8. 1/2 MS medium was more conducive than MS medium to the induction of rooting. The optimal medium for the rooting of tissue-cultured Zhongshanshan shoots was 1/2 MS + 0. 3 mg/L IBA + 0. 2 mg/L NAA.展开更多
Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address...Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1.展开更多
Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en...Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.展开更多
In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive p...In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance.展开更多
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金Supported by the National Natural Science Foundation of China (60804027, 61064003) and Fuzhou University Research Foundation (FZU-02335, 600338 and 600567).
文摘Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.
基金supported by National Science Foundation of China(11171221)Doctoral Program Foundation of Institutions of Higher Education of China(20123120110004)+2 种基金Natural Science Foundation of Shanghai(14ZR1429200)Innovation Program of Shanghai Municipal Education Commission(15ZZ073)Key Research Project Plan of Institutions of Higher of Henan Province(17A120010)
文摘This paper studies a bounded discriminating domain for hybrid linear differential game with two players and two targets using viability theory. First of all, we prove that the convex hull of a closed set is also a discriminating domain if the set is a discriminating domain. Secondly, in order to determine that a bounded polyhedron is a discriminating domain, we give a result that it only needs to verify that the extreme points of the polyhedron meet the viability conditions. The difference between our result and the existing ones is that our result just needs to verify the finite points (extreme points) and the existing ones need to verify all points in the bounded polyhedron.
基金supported by the National Basic Research Program of China(No.2007CB316502)the National Natural Science Foundation of China(No.60534060)
文摘Task scheduling is one of the core steps to effectively exploit the capabilities of heterogeneous re-sources in the grid.This paper presents a new hybrid differential evolution(HDE)algorithm for findingan optimal or near-optimal schedule within reasonable time.The encoding scheme and the adaptation ofclassical differential evolution algorithm for dealing with discrete variables are discussed.A simple but ef-fective local search is incorporated into differential evolution to stress exploitation.The performance of theproposed HDE algorithm is showed by being compared with a genetic algorithm(GA)on a known staticbenchmark for the problem.Experimental results indicate that the proposed algorithm has better perfor-mance than GA in terms of both solution quality and computational time,and thus it can be used to de-sign efficient dynamic schedulers in batch mode for real grid systems.
文摘In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems.
文摘This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.
文摘This study was carried out to optimize the culture media for the micropropagation of Taxodium hybrid Zhongshanshan( T. distichum × T. mucronatum).Using the tender stems of Zhongshanshan 301 as the explants,the effects of NAA,6-BA,IBA and KT on the induction of differentiation,proliferation and rooting were evaluated on MS or 1/2 MS medium. The results showed that Zhongshanshan can be proliferated via tissue culture. The combined use of NAA and 6-BA in MS medium greatly promoted the differentiation of Zhongshanshan explants,and the optimal medium was MS + 0. 2 mg/L NAA + 0. 4 mg/L6-BA. The optimal medium for the proliferation of differentiated buds was MS + 0. 3 mg/L NAA + 0. 4 mg/L 6-BA,on which the proliferation rate was up to 3. 8. 1/2 MS medium was more conducive than MS medium to the induction of rooting. The optimal medium for the rooting of tissue-cultured Zhongshanshan shoots was 1/2 MS + 0. 3 mg/L IBA + 0. 2 mg/L NAA.
基金supported in part by the National Natural Science Foundation of China's top-level program under grant No.52275480in part by Reserve projects for centralized guidance of local science and technology development funds under grant No.QKHZYD[2023]002.
文摘Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2014AA041501)
文摘Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.
基金Project supported by the Plan for the growth of young teachers,the National Natural Science Foundation of China(No.51505138)the National 973 Program of China(No.2010CB328005)+1 种基金Outstanding Youth Foundation of NSFC(No.50625519)Program for Changjiang Scholars
文摘In this work,a hybrid meta-model based design space differentiation(HMDSD)method is proposed for practical problems.In the proposed method,an iteratively reduced promising region is constructed using the expensive points,with two different search strategies respectively applied inside and outside the promising region.Besides,the hybrid meta-model strategy applied in the search process makes it possible to solve the complex practical problems.Tested upon a serial of benchmark math functions,the HMDSD method shows great efficiency and search accuracy.On top of that,a practical lightweight design demonstrates its superior performance.