In this paper,we consider a new differential variational inequality(DVI,for short)which is composed of an evolution equation and a variational inequality in infinite Banach spaces.This kind of problems may be regard...In this paper,we consider a new differential variational inequality(DVI,for short)which is composed of an evolution equation and a variational inequality in infinite Banach spaces.This kind of problems may be regarded as a special feedback control problem.Based on the Browder's theorem and the optimal control theory,we show the existence of solutions to the mentioned problem.展开更多
This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fra...This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fractional delay evolution equation and a variational inequality.Our approach is based on the resolvent technique and a generalization of strongly continuous semigroups combined with Schauder's fixed point theorem.展开更多
In this article, a new differential inverse variational inequality is introduced and studied in finite dimensional Euclidean spaces. Some results concerned with the linear growth of the solution set for the differenti...In this article, a new differential inverse variational inequality is introduced and studied in finite dimensional Euclidean spaces. Some results concerned with the linear growth of the solution set for the differential inverse variational inequalities are obtained under different conditions. Some existence theorems of Caratheodory weak solutions for the differential inverse variational inequality are also established under suitable conditions. An application to the time-dependent spatial price equilibrium control problem is also given.展开更多
The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation...The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation in the framework of Banach spaces. Using discrete approximation approach, an existence theorem of solutions for the inequality is established under some suitable assumptions.展开更多
This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measur...This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.展开更多
基金supported by NNSF of China(11671101)the National Science Center of Poland Under Maestro Advanced Project(UMO-2012/06/A/ST1/00262)Special Funds of Guangxi Distinguished Experts Construction Engineering
文摘In this paper,we consider a new differential variational inequality(DVI,for short)which is composed of an evolution equation and a variational inequality in infinite Banach spaces.This kind of problems may be regarded as a special feedback control problem.Based on the Browder's theorem and the optimal control theory,we show the existence of solutions to the mentioned problem.
基金supported by the National Natural Science Foundation of China(11772306)Natural Science Foundation of Guangxi Province(2018GXNSFAA281021)+2 种基金Guangxi Science and Technology Base Foundation(AD20159017)the Foundation of Guilin University of Technology(GUTQDJJ2017062)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUGGC05).
文摘This paper investigates the nonemptiness and compactness of the mild solution set for a class of Riemann-Liouville fractional delay differential variational inequalities,which are formulated by a Riemann-Liouville fractional delay evolution equation and a variational inequality.Our approach is based on the resolvent technique and a generalization of strongly continuous semigroups combined with Schauder's fixed point theorem.
基金supported by the National Natural Science Foundation of China(11301359,11171237)the Key Program of NSFC(70831005)
文摘In this article, a new differential inverse variational inequality is introduced and studied in finite dimensional Euclidean spaces. Some results concerned with the linear growth of the solution set for the differential inverse variational inequalities are obtained under different conditions. Some existence theorems of Caratheodory weak solutions for the differential inverse variational inequality are also established under suitable conditions. An application to the time-dependent spatial price equilibrium control problem is also given.
基金received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement(823731-CONMECH)supported by the National Science Center of Poland under Maestro Project(UMO-2012/06/A/ST1/00262)+3 种基金National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)supported by the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland(3792/GGPJ/H2020/2017/0)Qinzhou University Project(2018KYQD06)National Natural Sciences Foundation of Guangxi(2018JJA110006)
文摘The goal of the present paper is to investigate an abstract system, called fractional differential variational inequality, which consists of a mixed variational inequality combined with a fractional evolution equation in the framework of Banach spaces. Using discrete approximation approach, an existence theorem of solutions for the inequality is established under some suitable assumptions.
基金supported by the National Natural Science Foundation of China(11471230,11671282)。
文摘This article deals with a new fractional nonlinear delay evolution system driven by a hemi-variational inequality in a Banach space.Utilizing the KKM theorem,a result concerned with the upper semicontinuity and measurability of the solution set of a hemivariational inequality is established.By using a fixed point theorem for a condensing setvalued map,the nonemptiness and compactness of the set of mild solutions are also obtained for such a system under mild conditions.Finally,an example is presented to illustrate our main results.