The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction patt...The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction pattern is observed to be of asymmetry, involving orders, position and interval of the diffraction spots that are discovered during the light grazing incidence. It is found that the larger the angle of incidence is, the more obvious the asymmetry is. The higher the negative diffraction orders are, the smaller the intervals between spots are. On the contrary~ in the positive region, the higher the diffraction orders are, the larger the spot intervals are. The positive interval is larger than that of the same negative diffraction order. If the incident angle reaches 1.558 rad in the experiment, all positive diffraction orders completely vanish. Based on the mechanism of phase modulation and with the Fourier transform method, the relations between the incident angle and position, interval spaces, and orders of diffraction spots are derived theoretically. The theoretical calculations are compared with the experimental data, and the comparison shows that the theoretical calculations are in good agreement with the experimental measurement.展开更多
Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide...Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.展开更多
Polypropylene copolymers (CPP) containing β-nucleating agent were investigated by differential scanningcalorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The results show th...Polypropylene copolymers (CPP) containing β-nucleating agent were investigated by differential scanningcalorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The results show thathigh content of β-phase crystals can also be formed for CPPs. Like PP homopolymers, the CPPs also have a most favorabletemperature near 132℃ for β-phase crystal growth. The crystallization rate of CPPs containing β-nucleating agent (β-CPP) ismuch greater than that of PP homopolymer containing β-nucleating agent (β-PP homopolymer). The observation ofspherulite morphology of β-CPP and β-PP homopolymer shows that the spherulites of β-CPP are more imperfect than thoseof β-PP homopolymer.展开更多
The mechanical properties of fibers were notably improved by incorporating 2,2'-bis(trifluoromethyl)benzidine(TFMB) into 3,3',4,4'-biphenyltetracarboxylic dianhydride(s-BPDA) and p-phenylenediamine(PPD) bac...The mechanical properties of fibers were notably improved by incorporating 2,2'-bis(trifluoromethyl)benzidine(TFMB) into 3,3',4,4'-biphenyltetracarboxylic dianhydride(s-BPDA) and p-phenylenediamine(PPD) backbone.The best strength and modulus of BPDA/PPD/TFMB polyimide(PI) fiber(diamine molar ratio of PPD/TFMB= 90/10) were 1.60 and 90 GPa,respectively,which was over two times that of BPDA/PPD PI fiber.SEM image showed that the cross-section of fibers at each stage was round and voids free.Besides,the "skin-core" and microfibrillar structure were not observed.The thermal properties of PI fibers were also investigated.The results showed that the fibers owned excellent thermal stability,moreover,the structural homogeneity of fibers were significantly improved by heat-drawn stage.The T g values were found to be around 300 °C by dynamic mechanical analysis(DMA).Wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS) experiments indicated that the order degree of longitudinal and lateral stacks,the molecular orientation and the structural homogeneity of fibers were improved in the preparation process of fibers.展开更多
An approach based on depth-sensitive skew-angle x-ray diffraction (SAXRD) is presented for approximately evalu- ating the depth-dependent mosaic tilt and twist in wurtzite c-plane GaN epilayers. It is found that (...An approach based on depth-sensitive skew-angle x-ray diffraction (SAXRD) is presented for approximately evalu- ating the depth-dependent mosaic tilt and twist in wurtzite c-plane GaN epilayers. It is found that (103) plane and (101) plane, among the lattice planes not perpendicular to the sample surface, are the best choices to measure the depth profiles of tilt and twist for a GaN epilayer with a thickness of less than 2 μm according to the diffraction geometry of SAXRD. As an illustration, the depth-sensitive (103)/(101) ω-scans of a 1.4-μm GaN film grown by metal-organic chemical vapor deposition on sapphire substrate are measured and analyzed to show the feasibility of this approach.展开更多
ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The s...ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The surfaces of the implanted samples were then analyzed and the TRIM 96 computer code was used to simulate the depth distribution of carbon. The valences of elements in the implanted surface of ZIRLO alloy were analyzed by X-ray photoemission spectroscopy (XPS); and then the depth distributions of the elements on the surface of the samples were obtained by Auger electron spectroscopy (AES). Scanning electron microscopy (SEM) was used to examine the micro-morphology of implanted samples. Glancing angle X-ray diffraction (GAXRD) at 0.30 incident angles was employed to examine the phase transformations of implanted samples. It shows that the as-received ZIRLO alloy is mainly composed of hexagonal alpha zirconium, as for implanted samples, there appeared hexagonal zirconia (H-ZrO_ 0.35) and sigma zirconium carbide (δ-Zr_3C_2), and the δ-Zr_3C_2 increased when increasing the fluence. When the fluence reached 1×10 18 ions·cm -2, the concentration of δ-Zr_3C_2 is the maximum in all the samples. The micro-morphology of implanted samples are similar, there are many pits with diameters ranging from 1 to 3 μm on the implanted surfaces.展开更多
Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shoc...Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu.The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry.Numeric simulations have been performed on with Eulerian code dynamics.The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity,pressure,particle velocity and shock pressure in the reactive media.A pin contactor method has been utilized to calculate the detonation pressure experimentally.Wide angled x-ray diffraction studies reveal that the crystalline structure(FCC)of the shocked specimen matches with the un-shocked specimen.Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations.Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities.Micro-hardness tests conducted under variable loads of 0.1 kg,0.05 kg and 0.025 kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159 Hv.Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3%theoretical mean density has been achieved.展开更多
基金Supported by the Open Research Fund of State Key Laboratory of Transient Optics and Photonics of Chinese Academy of Sciences under Grant No SKLST201508the China Postdoctoral Science Foundation Funded Project under Grant No 2015M580945the Government of Chaoyang District Postdoctoral Research Foundation
文摘The angle compensation method is adopted to detect sloshing waves by laser diffraction, in the case that the wavelength of the sloshing waves is much greater than that of the incident light. The clear diffraction pattern is observed to be of asymmetry, involving orders, position and interval of the diffraction spots that are discovered during the light grazing incidence. It is found that the larger the angle of incidence is, the more obvious the asymmetry is. The higher the negative diffraction orders are, the smaller the intervals between spots are. On the contrary~ in the positive region, the higher the diffraction orders are, the larger the spot intervals are. The positive interval is larger than that of the same negative diffraction order. If the incident angle reaches 1.558 rad in the experiment, all positive diffraction orders completely vanish. Based on the mechanism of phase modulation and with the Fourier transform method, the relations between the incident angle and position, interval spaces, and orders of diffraction spots are derived theoretically. The theoretical calculations are compared with the experimental data, and the comparison shows that the theoretical calculations are in good agreement with the experimental measurement.
基金Scientific and Technological Project of Hubei Province(No.2002AA105A01)
文摘Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.
文摘Polypropylene copolymers (CPP) containing β-nucleating agent were investigated by differential scanningcalorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The results show thathigh content of β-phase crystals can also be formed for CPPs. Like PP homopolymers, the CPPs also have a most favorabletemperature near 132℃ for β-phase crystal growth. The crystallization rate of CPPs containing β-nucleating agent (β-CPP) ismuch greater than that of PP homopolymer containing β-nucleating agent (β-PP homopolymer). The observation ofspherulite morphology of β-CPP and β-PP homopolymer shows that the spherulites of β-CPP are more imperfect than thoseof β-PP homopolymer.
基金Supported by the Science & Technology Development Program of Jilin Province,China(No.20100537)
文摘The mechanical properties of fibers were notably improved by incorporating 2,2'-bis(trifluoromethyl)benzidine(TFMB) into 3,3',4,4'-biphenyltetracarboxylic dianhydride(s-BPDA) and p-phenylenediamine(PPD) backbone.The best strength and modulus of BPDA/PPD/TFMB polyimide(PI) fiber(diamine molar ratio of PPD/TFMB= 90/10) were 1.60 and 90 GPa,respectively,which was over two times that of BPDA/PPD PI fiber.SEM image showed that the cross-section of fibers at each stage was round and voids free.Besides,the "skin-core" and microfibrillar structure were not observed.The thermal properties of PI fibers were also investigated.The results showed that the fibers owned excellent thermal stability,moreover,the structural homogeneity of fibers were significantly improved by heat-drawn stage.The T g values were found to be around 300 °C by dynamic mechanical analysis(DMA).Wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS) experiments indicated that the order degree of longitudinal and lateral stacks,the molecular orientation and the structural homogeneity of fibers were improved in the preparation process of fibers.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.61306017 and 61204006)the Key Program of the National Natural Science Foundation of China(Grant No.61334002)the Fundamental Research Funds for the Central Universities of China(Grant Nos.K5051225016 and K5051325020)
文摘An approach based on depth-sensitive skew-angle x-ray diffraction (SAXRD) is presented for approximately evalu- ating the depth-dependent mosaic tilt and twist in wurtzite c-plane GaN epilayers. It is found that (103) plane and (101) plane, among the lattice planes not perpendicular to the sample surface, are the best choices to measure the depth profiles of tilt and twist for a GaN epilayer with a thickness of less than 2 μm according to the diffraction geometry of SAXRD. As an illustration, the depth-sensitive (103)/(101) ω-scans of a 1.4-μm GaN film grown by metal-organic chemical vapor deposition on sapphire substrate are measured and analyzed to show the feasibility of this approach.
文摘ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The surfaces of the implanted samples were then analyzed and the TRIM 96 computer code was used to simulate the depth distribution of carbon. The valences of elements in the implanted surface of ZIRLO alloy were analyzed by X-ray photoemission spectroscopy (XPS); and then the depth distributions of the elements on the surface of the samples were obtained by Auger electron spectroscopy (AES). Scanning electron microscopy (SEM) was used to examine the micro-morphology of implanted samples. Glancing angle X-ray diffraction (GAXRD) at 0.30 incident angles was employed to examine the phase transformations of implanted samples. It shows that the as-received ZIRLO alloy is mainly composed of hexagonal alpha zirconium, as for implanted samples, there appeared hexagonal zirconia (H-ZrO_ 0.35) and sigma zirconium carbide (δ-Zr_3C_2), and the δ-Zr_3C_2 increased when increasing the fluence. When the fluence reached 1×10 18 ions·cm -2, the concentration of δ-Zr_3C_2 is the maximum in all the samples. The micro-morphology of implanted samples are similar, there are many pits with diameters ranging from 1 to 3 μm on the implanted surfaces.
基金Defence Research and Development Organization(DRDO),India,for Grant-in-aid Project No.ERIP/ER/0703665/M/01/1044the University Grants Commission(UGC-New Delhi),India,for providing Research Fellowship No.F.4-1/2006(BSR)/11-08/2008.
文摘Micro-sized copper powder(99.95%;O≤0.3)has been shock-processed with explosives of high detonation velocities of the order of 7.5 km/s to observe the structural and microstructural sub-strengthening.Axisymmetric shock-consolidation technique has been used to obtain conglomerates of granular Cu.The technique involves the cylindrical compaction system wherein the explosive-charge is in direct proximity with the powder whereas the other uses indirect shock pressure with die-plunger geometry.Numeric simulations have been performed on with Eulerian code dynamics.The simulated results show a good agreement with the experimental observation of detonation parameters like detonation velocity,pressure,particle velocity and shock pressure in the reactive media.A pin contactor method has been utilized to calculate the detonation pressure experimentally.Wide angled x-ray diffraction studies reveal that the crystalline structure(FCC)of the shocked specimen matches with the un-shocked specimen.Field emissive scanning electron microscopic examination of the compacted specimens show a good sub-structural strengthening and complement the theoretical considerations.Laser diffraction based particle size analyzer also points towards the reduced particle size of the shock-processed specimen under high detonation velocities.Micro-hardness tests conducted under variable loads of 0.1 kg,0.05 kg and 0.025 kg force with diamond indenter optical micrographs indicate a high order of micro-hardness of the order of 159 Hv.Nitrogen pycnometry used for the density measurement of the compacts shows that a compacted density of the order of 99.3%theoretical mean density has been achieved.