In the present paper, the maximal Lyapunov ex- ponent is investigated for a co-dimension two bifurcation system that is on a three-dimensional central manifold and subjected to parametric excitation by a bounded noise...In the present paper, the maximal Lyapunov ex- ponent is investigated for a co-dimension two bifurcation system that is on a three-dimensional central manifold and subjected to parametric excitation by a bounded noise. By using a perturbation method, the expressions of the invari- ant measure of a one-dimensional phase diffusion process are obtained for three cases, in which different forms of the matrix B, that is included in the noise excitation term, are assumed and then, as a result, all the three kinds of singular boundaries for one-dimensional phase diffusion process are analyzed. Via Monte-Carlo simulation, we find that the an- alytical expressions of the invariant measures meet well the numerical ones. And furthermore, the P-bifurcation behav- iors are investigated for the one-dimensional phase diffusion process. Finally, for the three cases of singular botmdaries for one-dimensional phase diffusion process, analytical ex- pressions of the maximal Lyapunov exponent are presented for the stochastic bifurcation system.展开更多
This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under ...This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under broad conditions,it is shown that there is an associated limit problem,which is a switching jump diffusion.Using near-optimal controls of the limit system,we then build controls for the original systems.It is shown that such constructed controls are nearly optimal.展开更多
基金supported by the National Natural Science Foundation of China (11072107,91016022)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20093218110003)
文摘In the present paper, the maximal Lyapunov ex- ponent is investigated for a co-dimension two bifurcation system that is on a three-dimensional central manifold and subjected to parametric excitation by a bounded noise. By using a perturbation method, the expressions of the invari- ant measure of a one-dimensional phase diffusion process are obtained for three cases, in which different forms of the matrix B, that is included in the noise excitation term, are assumed and then, as a result, all the three kinds of singular boundaries for one-dimensional phase diffusion process are analyzed. Via Monte-Carlo simulation, we find that the an- alytical expressions of the invariant measures meet well the numerical ones. And furthermore, the P-bifurcation behav- iors are investigated for the one-dimensional phase diffusion process. Finally, for the three cases of singular botmdaries for one-dimensional phase diffusion process, analytical ex- pressions of the maximal Lyapunov exponent are presented for the stochastic bifurcation system.
基金supported in part by the National Science Foundation under DMS-1207667supported in part by NSFC and RFDP
文摘This work develops near-optimal controls for systems given by differential equations with wideband noise and random switching.The random switching is modeled by a continuous-time,time-inhomogeneous Markov chain.Under broad conditions,it is shown that there is an associated limit problem,which is a switching jump diffusion.Using near-optimal controls of the limit system,we then build controls for the original systems.It is shown that such constructed controls are nearly optimal.