The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa ...The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa , and a firm joint is obtained. The microstructure of diffusion bonded joint has been observed by SEM, X ray and EPMA, and the main factors affecting diffusion bonding have been analyzed. The intermetallic compounds Ti 2Cu and TiCu were formed near the interface. The width and quantity of the intermetallic compound increases with the increase of the bonding time. The formation of the intermetallic compounds results in embrittlement of the joint and the poor joint properties.展开更多
The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze ( ZQSn10-10 ) with Ni and Ni + Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electr...The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze ( ZQSn10-10 ) with Ni and Ni + Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy ( EDS ) and X-ray diffraction ( XRD ). The results show that when the interlayer is Ni or Ni + Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc. ). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830 ℃/10 MPa/30 min. And when the interlayer is Ni + Cu, the optimum bonding parameters are 850 ℃/10 MPa/20 min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni + Cu interlayer both are 155.8 MPa, which is 65 percent of the strength of ZQSn10-10 base metal.展开更多
文摘The vacuum diffusion bonding of titanium alloy to tin bronze has been studied and the feasibility and appropriate processing parameters have been investigated. The maximum tensile strength of the joints is 168 MPa , and a firm joint is obtained. The microstructure of diffusion bonded joint has been observed by SEM, X ray and EPMA, and the main factors affecting diffusion bonding have been analyzed. The intermetallic compounds Ti 2Cu and TiCu were formed near the interface. The width and quantity of the intermetallic compound increases with the increase of the bonding time. The formation of the intermetallic compounds results in embrittlement of the joint and the poor joint properties.
基金The work was supported by National Natural Science Foundation of China(No50375065)State Key Laboratory of Advanced Welding Production Technology(No04005)
文摘The diffusion bonding was carried out to join Ti alloy (Ti-6Al-4V) and tin-bronze ( ZQSn10-10 ) with Ni and Ni + Cu interlayer. The microstructures of the diffusion bonded joints were analyzed by scanning electron microscope (SEM), energy dispersive spectroscopy ( EDS ) and X-ray diffraction ( XRD ). The results show that when the interlayer is Ni or Ni + Cu transition metals both could effectively prevent the diffusion between Ti and Cu and avoid the formation of the Cu-Ti intermetallic compounds (Cu3Ti, CuTi etc. ). But the Ni-Ti intermetallic compounds (NiTi, Ni3Ti) are formed on the Ti-6Al-4V/Ni interface. When the interlayer is Ni, the optimum bonding parameters are 830 ℃/10 MPa/30 min. And when the interlayer is Ni + Cu, the optimum bonding parameters are 850 ℃/10 MPa/20 min. With the optimum bonding parameters, the tensile strength of the joints with Ni and Ni + Cu interlayer both are 155.8 MPa, which is 65 percent of the strength of ZQSn10-10 base metal.