期刊文献+
共找到163篇文章
< 1 2 9 >
每页显示 20 50 100
An Explicit Difference Scheme with High Accuracy and Branching Stability for Solving Parabolic Partial Differential Equation 被引量:4
1
作者 马明书 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第4期98-103,共6页
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△... This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2. 展开更多
关键词 parabolic type equation explicit difference scheme high accuracy branching stability truncation er
下载PDF
A High-order Accuracy Explicit Difference Scheme with Branching Stability for Solving Higher-dimensional Heat-conduction Equation 被引量:3
2
作者 MA Ming-shu MA Ju-yi +1 位作者 GU Shu-min ZHU Lin-lin 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第3期446-452,共7页
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio... A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4). 展开更多
关键词 heat-conduction equation explicit difference scheme high-order accuracy branching stability
下载PDF
Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation 被引量:1
3
作者 MA Yan 《Chinese Quarterly Journal of Mathematics》 2016年第1期69-81,共13页
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim... Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper. 展开更多
关键词 time fractional diffusion equation finite difference approximation implicit scheme stability CONVERGENCE EFFECTIVENESS
下载PDF
A new alternating group explicit-implicit algorithm with high accuracy for dispersive equation
4
作者 张青洁 王文洽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第9期1221-1230,共10页
In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation er... In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation error in space and a convergence ratio faster than some known alternating methods such as ASEI and AGE. Comparison in accuracy with the AGEI and AGE methods is presented in the numerical experiment. 展开更多
关键词 Dispersive equation finite difference alternating group explicit-implicitmethod (nAGEI) high accuracy unconditional stability parallel computation.
下载PDF
Alternating Group Explicit Iterative Methods for One-Dimensional Advection-Diffusion Equation
5
作者 Ning Chen Haiming Gu 《American Journal of Computational Mathematics》 2015年第3期274-282,共9页
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)... The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable. 展开更多
关键词 ONE-DIMENSIONAL ADVECTION-diffusion equations ALTERNATING Group EXPLICIT ITERATIVE Methods stability Convergence Finite difference Method
下载PDF
A HIGH-ORDER-ACCURATE DIFFERENCE SCHEME WITH UNCONDITIONAL STABILITY FOR THE DIFFUSION EQUATION ON NONUNIFORM GRIDS 被引量:2
6
作者 Wang Xuan, Yang Zhi-feng State Key Laboratory of Environment Simulation and Pollution Control, Institute of Environmental Sciences, Beijing Normal University, Beijing 100875, China 《Journal of Hydrodynamics》 SCIE EI CSCD 2001年第1期92-98,共7页
WT5”BZ]A high-order-accurate difference scheme with unconditional stability is developed for the diffusion equation on nonuniform grids. The theoretical analysis shows that the accuracy of this scheme is between thir... WT5”BZ]A high-order-accurate difference scheme with unconditional stability is developed for the diffusion equation on nonuniform grids. The theoretical analysis shows that the accuracy of this scheme is between third order and fourth order, and fourth-order accuracy is achieved in the case of the same grid steps being used within the computational domain. Two numerical examples are given to demonst ate the advantages of the proposed scheme. Compared with the conventional difference scheme, more accurate numerical solution can be obtained by using the proposed scheme even with relatively larger grid sizes. It is also pointed out that the appropriate structure of the nonuniform grid can not only make the proposed scheme more practical, but lead to a solution superior to that for a uniform grid structure. [WT5”HZ] 展开更多
关键词 ]finite difference scheme diffusion equation nonuniform grid high accuracy computational fluid dynamics
原文传递
Compact Difference Method for Time-Fractional Neutral Delay Nonlinear Fourth-Order Equation
7
作者 Huan Wang Qing Yang 《Engineering(科研)》 CAS 2022年第12期544-566,共23页
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s... In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme. 展开更多
关键词 Two-Dimensional Nonlinear Sub-diffusion equations Neutral Delay Compact difference Scheme CONVERGENCE stability
下载PDF
Structure-dependent difference equations for time integration
8
作者 Shuenn-Yih Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期485-498,共14页
A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantan... A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method. 展开更多
关键词 time history analysis structure-dependent difference equation stability accuracy
下载PDF
THEORETICAL PREDICTION OF PROEUTECTOID FERRITICTRANSFORMATION IN HYPO-PROEUTECTOID STRUCTRAL STEELS
9
作者 H.B.Chang Z.G.Li +2 位作者 T.Y.Hsu Z.Y.Xu X.Y.Ruan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第3期207-214,共8页
Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from... Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data. 展开更多
关键词 proeutectoid ferrite formation temperature difference interfacial enerpy parameters activation energy for diffusion Johnson-Mehl equation
下载PDF
广义Rosenau-KdV-RLW方程的一个新的高精度守恒差分格式
10
作者 胡俊林 刘哲含 胡劲松 《西北师范大学学报(自然科学版)》 CAS 2024年第3期127-132,共6页
对一类广义Rosenau-KdV-RLW方程的初边值问题提出一个新的高精度守恒差分算法.利用Taylor展式,在空间层做部分外推处理,直接从整体上抵消空间截断误差的二阶部分,在时间层采用Crank-Nicolson格式,从而在时间方向和空间方向分别达到了二... 对一类广义Rosenau-KdV-RLW方程的初边值问题提出一个新的高精度守恒差分算法.利用Taylor展式,在空间层做部分外推处理,直接从整体上抵消空间截断误差的二阶部分,在时间层采用Crank-Nicolson格式,从而在时间方向和空间方向分别达到了二阶精度和四阶精度;合理模拟了问题本身的一个守恒量,并利用离散Sobolev嵌入不等式和离散泛函分析方法,证明了格式的收敛性和稳定性;最后,数值算例验证了该方法的有效性. 展开更多
关键词 广义Rosenau-KdV-RLW方程 高精度守恒差分格式 收敛性 稳定性
下载PDF
二维扩散方程的Du Fort-Frankel差分格式
11
作者 黄卓红 唐榕羚 《广西民族大学学报(自然科学版)》 CAS 2024年第1期105-108,共4页
文章对水质污染分析模型的数值求解技术展开研究,深入细致地探索扩散方程的新型差分格式,应用Du Fort-Frankel差分格式对二维扩散方程进行离散,使用泰勒展开式,提出该类差分格式具有二阶精度,指出该类差分格式与原二维扩散方程是相容的... 文章对水质污染分析模型的数值求解技术展开研究,深入细致地探索扩散方程的新型差分格式,应用Du Fort-Frankel差分格式对二维扩散方程进行离散,使用泰勒展开式,提出该类差分格式具有二阶精度,指出该类差分格式与原二维扩散方程是相容的,并验证了该类差分格式的收敛性和绝对稳定性。 展开更多
关键词 二维扩散方程 Du Fort-Frankel差分格式 相容 收敛 稳定性
下载PDF
带间断非线性定常对流扩散方程的高精度解法
12
作者 陈雪钦 王晓峰 晏云 《莆田学院学报》 2024年第5期33-38,共6页
针对一类带有间断系数的非线性定常对流扩散方程,提出了一种高精度的紧致有限差分方法;该方法在内点处采用的是三点四阶的差分格式,在边界点与间断点处采用的是两点三阶的差分格式;给出的数值算例表明这种新的方法整体求解精度可以达到... 针对一类带有间断系数的非线性定常对流扩散方程,提出了一种高精度的紧致有限差分方法;该方法在内点处采用的是三点四阶的差分格式,在边界点与间断点处采用的是两点三阶的差分格式;给出的数值算例表明这种新的方法整体求解精度可以达到四阶。 展开更多
关键词 非线性对流项 对流扩散方程 高精度 间断 定常 有限差分
下载PDF
求解扩散方程的一种高精度隐式差分方法 被引量:19
13
作者 葛永斌 田振夫 +1 位作者 詹咏 吴文权 《上海理工大学学报》 EI CAS 北大核心 2005年第2期107-110,119,共5页
利用一阶微商和二阶微商的四阶紧致差分逼近公式,推导出了数值求解一维扩散方程的两种新的高精度隐式紧致差分格式,其截断误差分别为O(τ2+h4)和O(τ4+h4).通过Fourier分析方法证明了格式O(τ2+h4)是无条件稳定的,而格式O(τ4+h4)是无... 利用一阶微商和二阶微商的四阶紧致差分逼近公式,推导出了数值求解一维扩散方程的两种新的高精度隐式紧致差分格式,其截断误差分别为O(τ2+h4)和O(τ4+h4).通过Fourier分析方法证明了格式O(τ2+h4)是无条件稳定的,而格式O(τ4+h4)是无条件不稳定的.并且由于每一时间层上只用到了3个网格点,所以差分方程可采用追赶法直接进行求解. 展开更多
关键词 扩散方程 紧致隐格式 高精度 差分方法
下载PDF
含源项非定常对流扩散方程的高精度紧致隐式差分方法 被引量:25
14
作者 葛永斌 田振夫 吴文权 《水动力学研究与进展(A辑)》 CSCD 北大核心 2006年第5期619-625,共7页
提出了数值求解含源项非定常对流扩散方程的一种高精度紧致隐式差分方法,其空间为四阶精度,时间为二阶精度。由于每一时间层上只用到了三个网格点,所以差分方程为三对角型的,可采用追赶法进行求解。数值实验结果验证了本文方法的精确性... 提出了数值求解含源项非定常对流扩散方程的一种高精度紧致隐式差分方法,其空间为四阶精度,时间为二阶精度。由于每一时间层上只用到了三个网格点,所以差分方程为三对角型的,可采用追赶法进行求解。数值实验结果验证了本文方法的精确性和可靠性。 展开更多
关键词 非定常对流扩散方程 紧致隐格式 高精度 差分方法
下载PDF
剖面二维非恒定悬移质泥沙扩散方程的数值方法 被引量:6
15
作者 张耀新 吴卫民 《泥沙研究》 CSCD 北大核心 1999年第2期40-45,共6页
通过讨论剖面二维非恒定泥沙扩散方程的数值方法,建立了一种用于求解含沙量分布沿程变化的差分格式(Z-C格式)并通过一个具体的数值例子说明了计算的方法步骤。
关键词 扩散方程 差分格式 稳定性 河流泥沙 悬移质
下载PDF
扩散方程的高精度加权差分格式 被引量:10
16
作者 田振夫 张艳萍 《中国科学技术大学学报》 CAS CSCD 北大核心 1999年第2期237-241,共5页
基于已发展的二阶微商三次样条四阶逼近公式,提出了数值求解含源汇项扩散方程的二层三点且在空间方向上达到四阶精度的加权差分格式.通过Fourier方法讨论了文中格式的稳定性.证明了当1/2θ1时,格式是无条件稳定的,... 基于已发展的二阶微商三次样条四阶逼近公式,提出了数值求解含源汇项扩散方程的二层三点且在空间方向上达到四阶精度的加权差分格式.通过Fourier方法讨论了文中格式的稳定性.证明了当1/2θ1时,格式是无条件稳定的,而当0θ<1/2时,只有0<r1/[3(1-2θ)],格式是稳定的.其中θ是权参量,r=Dτ/h2为Fourier数,D为扩散系数,而τ。 展开更多
关键词 扩散方程 加权差分格式 稳定性 精度 有限差分法
下载PDF
对流扩散方程差分格式稳定性分析 被引量:7
17
作者 范德辉 陈辉 +1 位作者 王秀凤 张传林 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2006年第1期24-29,共6页
用Fourier方法分析了离散线性对流扩散方程一些差分格式的稳定性和其截断误差.在这些格式的基础上,给出一个新的跳点格式,该格式具有更优的计算效率,数值实验结果与理论分析结果一致.
关键词 对流扩散方程 FOURIER分析 差分格式稳定性
下载PDF
时间分数阶反应-扩散方程的隐式差分近似 被引量:20
18
作者 于强 刘发旺 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第3期315-319,共5页
考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它... 考虑时间分数阶反应-扩散方程,它是从标准的反应-扩散方程中用分数阶导数α(0<α<1)代替一阶时间导数而得到.提出了一个计算有效的隐式差分近似.利用分数阶离散系数的特点,证明了这个隐式差分近似是无条件稳定的,并且也证明了它的收敛性.最后给出数值例子. 展开更多
关键词 时间分数阶 反应-扩散方程 隐式差分近似 稳定性 收敛性
下载PDF
对流扩散方程的一种高精度特征差分格式 被引量:7
19
作者 黄素珍 张鲁明 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期38-41,70,共5页
根据已发展的二阶微商三次样条四阶逼近公式,提出了基于线性插值的求解对流扩散方程特征差分格式.通过Fourier方法讨论了文中格式的稳定性.数值结果表明,本文的格式明显优于基于线性插值的特征差分格式.
关键词 对流扩散方程 特征差分格式 线性插值 稳定性 高精度
下载PDF
对流扩散方程的自忆积分格式 被引量:5
20
作者 陆君安 吕金虎 夏军 《计算物理》 CSCD 北大核心 2000年第6期664-670,共7页
在自记忆动力学的基础上推导了对流扩散方程的单参数自忆回溯时间积分格式 ,并应用差分理论讨论了其稳定性。计算结果表明 ,这种单参数回溯时间积分格式不仅精度高 。
关键词 对流扩散方程 自记忆 差分格式 稳定性 热力学
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部