This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio...A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation er...In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation error in space and a convergence ratio faster than some known alternating methods such as ASEI and AGE. Comparison in accuracy with the AGEI and AGE methods is presented in the numerical experiment.展开更多
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)...The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.展开更多
WT5”BZ]A high-order-accurate difference scheme with unconditional stability is developed for the diffusion equation on nonuniform grids. The theoretical analysis shows that the accuracy of this scheme is between thir...WT5”BZ]A high-order-accurate difference scheme with unconditional stability is developed for the diffusion equation on nonuniform grids. The theoretical analysis shows that the accuracy of this scheme is between third order and fourth order, and fourth-order accuracy is achieved in the case of the same grid steps being used within the computational domain. Two numerical examples are given to demonst ate the advantages of the proposed scheme. Compared with the conventional difference scheme, more accurate numerical solution can be obtained by using the proposed scheme even with relatively larger grid sizes. It is also pointed out that the appropriate structure of the nonuniform grid can not only make the proposed scheme more practical, but lead to a solution superior to that for a uniform grid structure. [WT5”HZ]展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantan...A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.展开更多
Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from...Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.展开更多
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
基金NSF of the Education Department of Henan Province(20031100010)
文摘A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金National Natural Science Foundation of China (No.10671113)
文摘In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation error in space and a convergence ratio faster than some known alternating methods such as ASEI and AGE. Comparison in accuracy with the AGEI and AGE methods is presented in the numerical experiment.
文摘The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable.
基金ProjectsupportedbytheMajorStateBasicResearchDevelopmentProgram (No .G19990 436 )andthe"Trans CenturyTrainingProgramFoundationfo
文摘WT5”BZ]A high-order-accurate difference scheme with unconditional stability is developed for the diffusion equation on nonuniform grids. The theoretical analysis shows that the accuracy of this scheme is between third order and fourth order, and fourth-order accuracy is achieved in the case of the same grid steps being used within the computational domain. Two numerical examples are given to demonst ate the advantages of the proposed scheme. Compared with the conventional difference scheme, more accurate numerical solution can be obtained by using the proposed scheme even with relatively larger grid sizes. It is also pointed out that the appropriate structure of the nonuniform grid can not only make the proposed scheme more practical, but lead to a solution superior to that for a uniform grid structure. [WT5”HZ]
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
基金The Science Council,Chinese Taipei Under Grant No.NSC-99-2221-E-027-029
文摘A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.
文摘Proeutectoid ferrite with carbon content xo precipitating from austenite in a multicomponent steel at temperature T is supposed to be equivalent to proeutectoid ferrite with the same carbon content precipitating from austenite in Fe-C binary system at temperature T'.is described as the temperature difference of proeutectiod ferrite formation, and can be calculated from the Fe-X diagrams and the equilibrium temperature A3. By introducing Tf and basing on the thermodynamic model for Fe-C binary alloy, the driving force for phase transformation from austenite to proeutectoid ferrite in multicomponent steels has been successfully calculated. Through the Johnson-Mehl equation and using the data hem known TTT diagrams, the relationship between the chemical composition and the intedecial edenly packeter as well as activation energy for proeutectoid ferrite formation can be calculated. The starting curves of proeutectoid ferritic transformation calculated in this way in some hypo-proeutectoid structural steels agree well with the erperimental data.