期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Study on the Influence of Fracturing Fluid Retention on Shale Gas Diffusion Law
1
作者 Zhiyuan Yao Jing Sun Dehua Liu 《Energy Engineering》 EI 2023年第8期1853-1866,共14页
Shale gas reservoirs have poor physical properties and a large number of micro-nano pores have been developed.Shale gas wells have no natural productivity and need fracturing reconstruction measures to put into produc... Shale gas reservoirs have poor physical properties and a large number of micro-nano pores have been developed.Shale gas wells have no natural productivity and need fracturing reconstruction measures to put into production.However,the fracturing fluid will enter the reservoir space of shale matrix after fracturing and affect the production of shale gas.At present,there is no consensus on the influence of fracturing fluid retention on gas well production.Based on this,the paper adopts gas molecular transport analyzer to carry out experimental research on the influence of fracturing fluid on shale gas diffusion law after entering matrix pores.The results show that:(1)Compared with the diffusion capacity of single-phase shale gas,the diffusion capacity of shale gas decreases significantly when fracturing fluid is present in the reservoir;(2)In the process of fracturing fluid flowback,when the water saturation in the reservoir decreases from 50%to 0,the gas well productivity increases by about 60%.(3)When fracturing fluid exists in the reservoir,the pore diameter has an exponential relationship with the shale gas diffusion coefficient,and the diffusion coefficient increases exponentially with the increase of pore diameter.The research of this paper provides theoretical basis for guiding the efficient development of shale gas wells. 展开更多
关键词 Shale gas micro nano pore water saturation diffusion law gas production
下载PDF
Chloride Diffusivity Analysis of Existing Concrete Based on Fick's Second Law
2
作者 张俊芝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期142-146,共5页
According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was st... According to the existing concrete core samples obtained in site, chloride concentration and porosity of existing normal hydraulic concrete were measured, and chloride diffusivity in existing hydraulic concrete was studied. By Fick’s second law, the chloride diffusion coefficients in the steady diffusion area were calculated. The chloride diffusion of different mix proportion concrete was tested, and chloride diffusion coefficients and porosities of freshly concrete were measured, moreover, the relationship between diffusion coefficient and porosity was analyzed. The results show that the varying law of chloride diffusion coefficient with exposure time of existing concrete can be predicted in a better way by Fick’s second law and water-cement ratios or porosity of concrete and chloride concentration in existing concrete. 展开更多
关键词 existing concrete Fick’s second diffusion law CHLORIDE diffusion coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部