期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure in the Weld Metal of Austenitic-Pearlitic Dissimilar Steels and Diffusion of Element in the Fusion Zone 被引量:6
1
作者 Yajiang LI, Zengda ZOU and Bing ZHOU Department of Materials Engineering, Shandong University, Jinan 250061, China E-mail: yajli@jn-public.sd.cninfo.net 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第3期338-342,共5页
Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning elec... Microstructure and alloy element distribution in the welded joint between austenitic stainless steel (1Cr18Ni9Ti) and pearlitic heat-resistant steel (1Cr5Mo) were researched by means of light microscopy, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). Microstructure, divisions of the fusion zone and elemental diffusion distributions in the welded joints were investigated. Furthermore, solidification microstructure and S-ferrite distribution in the weld metal of these steels are also discussed. 展开更多
关键词 Microstructure in the Weld Metal of Austenitic-Pearlitic Dissimilar Steels and diffusion of Element in the Fusion Zone
下载PDF
Effect of alternative magnetic field on the diffusion layer growth in Al/Zn couple
2
作者 LIUXiaotao CUIJianzhong WUXiaoming GUOYanhui ZHANGJun 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期246-249,共4页
The influence of an alternative magnetic field on the growth of the diffusionlayer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. Theresults show that the alternative magneti... The influence of an alternative magnetic field on the growth of the diffusionlayer in Al-Zn diffusion couple was studied. The thickness of the diffusion layer was examined. Theresults show that the alternative magnetic field increases the thickness of the diffusion layer andthe effect increases with the intensity and frequency of the alternative magnetic field increasing. The growth of the diffusion layer obeys the parabolic rate law and the growth rateincreases with the application of the alternative magnetic field. This growth rate change ismanifested through a change in the frequency factor k_0 and not through a change in the activationenergy Q. The frequency factor k_0 for the diffusion layer growth with the alternative magneticfield is 5.03 cm^2/s and the one without the magnetic field is 3.84 cm^2/s. 展开更多
关键词 alternative magnetic field Al-Zn couple diffusion zone thickness parabolic rate law
下载PDF
Relation between oxidation microstructure and the maximum energy product loss of a Sm_2Co_(17) magnet oxidized at 500℃ 被引量:1
3
作者 刘丽丽 蒋成保 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期416-420,共5页
The oxidation microstructure and maximum energy product (BH)max loss of a 8m(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed... The oxidation microstructure and maximum energy product (BH)max loss of a 8m(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous externM oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91×10^-10 cm^2/s and 6.54×10^-11 cm^2/s, respectively. 展开更多
关键词 Sm2Co17 magnet maximum energy product loss internal reaction layer diffusion zone
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部