Diffusion bonding is a near net shape forming process that can join dissimilar materials through atomic diffusion under a high pressure at a high temperature.Titanium alloy TC4(Ti-6 Al-4 V)and 4 J29 Kovar alloy(Fe-...Diffusion bonding is a near net shape forming process that can join dissimilar materials through atomic diffusion under a high pressure at a high temperature.Titanium alloy TC4(Ti-6 Al-4 V)and 4 J29 Kovar alloy(Fe-29 Ni-17 Co)were diffusely bonded by a vacuum hot-press sintering process in the temperature range of 700-850°C and bonding time of 120 min,under a pressure of 34.66 MPa.Interfacial microstructures and intermetallic compounds of the diffusion-bonded joints were characterized by optical microscopy,scanning electron microscopy,X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS).The elemental diffusion across the interface was revealed by electron probe microanalysis.Mechanical properties of joints were investigated by micro Vickers hardness and tensile strength.Results of EDS and XRD indicated that(Fe,Co,Ni)-Ti,TiNi,Ti_2Ni,TiNi_2,Fe_2 Ti,Ti_(17) Mn_3 and Al_6 Ti_(19) were formed at the interface.When the bonding temperature was raised from 700 to 850°C,the voids of interface were reduced and intermetallic layers were widened.Maximum tensile strength of joints at 53.5 MPa was recorded by the sintering process at 850°C for 120 min.Fracture surface of the joint indicated brittle nature,and failure took place through interface of intermetallic compounds.Based on the mechanical properties and microstructure of the diffusion-bonded joints,diffusion mechanisms between Ti-6 Al-4 Vtitanium and Fe-29 Ni-17 Co Kovar alloys were analyzed in terms of elemental diffusion,nucleation and growth of grains,plastic deformation and formation of intermetallic compounds near the interface.展开更多
Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plat...Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.展开更多
The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigat...The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigated through molecular dynamics.It is shown that atomic diffusion occurs at the Ni/Al_(2)O_(3) interface in the temperature range from 698 K to 1,098 K,and proceeds mainly from the Ni side to the ) Al_(2)O_(3) side.The interface was previously reconstructed by solid bonding below the melting temperature,leading to the amorphization of the interface.Be-sides,the intermetallic complexes such as Al_(m)Ni_(n)(e.g.,AlNi_(3)),metal oxide NiO and Ni-Al-O bonds were formed gradually during the diffusion process of atoms.The formation mechanisms of the Ni-Al,Ni-O,and Ni-Al-O bonds are revealed.Based on the reconstructed structure,the adhesion effort at the interface is compared.The higher the temperature,the larger the bond number and the higher the interfacial bonding strength.展开更多
基金supported by National Natural Science Foundation of China(No.51201143)Fundamental Research Funds for the Central Universities (No.2682015CX001)+5 种基金China Postdoctoral Science Foundation(No.2015M570794)Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-14-04)Sichuan Science and Technology Support Program(No.2016FZ0079)R&D Projects Funding from the Research Council of Norway(No.263875/H30)supported by the U.S. National Science Foundation No.1436120supported by DoD W911NF14-1-0060
文摘Diffusion bonding is a near net shape forming process that can join dissimilar materials through atomic diffusion under a high pressure at a high temperature.Titanium alloy TC4(Ti-6 Al-4 V)and 4 J29 Kovar alloy(Fe-29 Ni-17 Co)were diffusely bonded by a vacuum hot-press sintering process in the temperature range of 700-850°C and bonding time of 120 min,under a pressure of 34.66 MPa.Interfacial microstructures and intermetallic compounds of the diffusion-bonded joints were characterized by optical microscopy,scanning electron microscopy,X-ray diffraction(XRD)and energy dispersive spectroscopy(EDS).The elemental diffusion across the interface was revealed by electron probe microanalysis.Mechanical properties of joints were investigated by micro Vickers hardness and tensile strength.Results of EDS and XRD indicated that(Fe,Co,Ni)-Ti,TiNi,Ti_2Ni,TiNi_2,Fe_2 Ti,Ti_(17) Mn_3 and Al_6 Ti_(19) were formed at the interface.When the bonding temperature was raised from 700 to 850°C,the voids of interface were reduced and intermetallic layers were widened.Maximum tensile strength of joints at 53.5 MPa was recorded by the sintering process at 850°C for 120 min.Fracture surface of the joint indicated brittle nature,and failure took place through interface of intermetallic compounds.Based on the mechanical properties and microstructure of the diffusion-bonded joints,diffusion mechanisms between Ti-6 Al-4 Vtitanium and Fe-29 Ni-17 Co Kovar alloys were analyzed in terms of elemental diffusion,nucleation and growth of grains,plastic deformation and formation of intermetallic compounds near the interface.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2002AA334070)
文摘Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.
基金supported by the National Natural Science Founda-tion of China(Grant Nos.:52076033 and 51836001).
文摘The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigated through molecular dynamics.It is shown that atomic diffusion occurs at the Ni/Al_(2)O_(3) interface in the temperature range from 698 K to 1,098 K,and proceeds mainly from the Ni side to the ) Al_(2)O_(3) side.The interface was previously reconstructed by solid bonding below the melting temperature,leading to the amorphization of the interface.Be-sides,the intermetallic complexes such as Al_(m)Ni_(n)(e.g.,AlNi_(3)),metal oxide NiO and Ni-Al-O bonds were formed gradually during the diffusion process of atoms.The formation mechanisms of the Ni-Al,Ni-O,and Ni-Al-O bonds are revealed.Based on the reconstructed structure,the adhesion effort at the interface is compared.The higher the temperature,the larger the bond number and the higher the interfacial bonding strength.