The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuato...The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.展开更多
Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of res...Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.展开更多
Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation proc...Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation process hinder their broader application.In this study,novel mullite anti-gyroid/SiC gyroid metastructures are designed to integrate the mechanical and electromagnetic wave(EMW)absorption properties of composite materials.Mullite anti-gyroid/SiC gyroid composites are fabricated utilizing a combination of digital light processing(DLP)three-dimensional(3D)printing and precursor infiltration and pyrolysis(PiP)processes.Through the modulation of structural units,the electromagnetic parameters can be effectively regulated,thus improving the impedance matching characteristics of the composites.The structural composites show outstanding EMW absorption properties,with a minimum reflection loss of-54 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 3.20 GHz at a thickness of 2.2 mm.Furthermore,the PIP process significantly enhances the mechanical properties of the composites;compared with those of the mullite/SiC ceramics,the flexural strength of the composites is improved by 3.69-5.85 times(13.28±1.15 MPa vs.(49.05±1.07)-(77.78±3.72)MPa),and the compressive strength is improved by 4.59-13.58 times(8.55±0.90 MPa vs.(39.02±1.63)-(116.13±2.58)MPa).This approach offers a novel and effective method for fabricating structural composites with an expanded range of higher electromagnetic wave absorption properties and improved mechanical properties.展开更多
Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly ...Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.展开更多
Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can...Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.展开更多
基金the National Natural Science Foundation of China(Nos.11572002 and 12002032)the China Postdoctoral Science Foundation(Nos.BX20200056 and 2020M670149)。
文摘The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.
基金supported by Shandong University−MSEA International Institute for Materials Genome Joint Innovation Center for Advanced Ceramics,and the Key Research and Development Projects of Shaanxi Province(Nos.2018ZDCXLGY-09-06 and 2021ZDLGY14-06).
文摘Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.
基金The authors gratefully acknowledged the financial support provided by the National Key R&D Program of China(No.2021YFB3701500)the Program of Shanghai Academic/Technology Research Leader(No.22XD1404000).
文摘Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation process hinder their broader application.In this study,novel mullite anti-gyroid/SiC gyroid metastructures are designed to integrate the mechanical and electromagnetic wave(EMW)absorption properties of composite materials.Mullite anti-gyroid/SiC gyroid composites are fabricated utilizing a combination of digital light processing(DLP)three-dimensional(3D)printing and precursor infiltration and pyrolysis(PiP)processes.Through the modulation of structural units,the electromagnetic parameters can be effectively regulated,thus improving the impedance matching characteristics of the composites.The structural composites show outstanding EMW absorption properties,with a minimum reflection loss of-54 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 3.20 GHz at a thickness of 2.2 mm.Furthermore,the PIP process significantly enhances the mechanical properties of the composites;compared with those of the mullite/SiC ceramics,the flexural strength of the composites is improved by 3.69-5.85 times(13.28±1.15 MPa vs.(49.05±1.07)-(77.78±3.72)MPa),and the compressive strength is improved by 4.59-13.58 times(8.55±0.90 MPa vs.(39.02±1.63)-(116.13±2.58)MPa).This approach offers a novel and effective method for fabricating structural composites with an expanded range of higher electromagnetic wave absorption properties and improved mechanical properties.
基金National Science Centre Poland(NCN),Grant/Award Number:2020/37/B/ST8/02167European Union’s Horizon 2020 research and innovation program,Grant/Award Number:813786+2 种基金National Institutes of Health,Grant/Award Number:R21EB025270National Science Foundation,Grant/Award Number:CBET-EBMS-1936105Brigham Research Institute。
文摘Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.
基金supported by grants from the Key Project Fund for Science and Technology Development of Guangdong Province (2020B090924003)the National Natural Science Foundation of China (51975230)Major Special Projects of Technological Innovation in Hubei Province (2019AAA002).
文摘Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.