Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communicatio...Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.展开更多
基于数字射频存储器(DRFM:Digital Radio Frequency Memory)的间歇采样转发式干扰与雷达发射信号相参,可以获得部分脉压增益,同时具有压制与欺骗两种干扰效果,对现代雷达极具威胁。干扰辨识是进行有效干扰抑制的前提。本文提出一种滑动...基于数字射频存储器(DRFM:Digital Radio Frequency Memory)的间歇采样转发式干扰与雷达发射信号相参,可以获得部分脉压增益,同时具有压制与欺骗两种干扰效果,对现代雷达极具威胁。干扰辨识是进行有效干扰抑制的前提。本文提出一种滑动截断匹配滤波(STMF:Sliding-Truncation Matched Filter)方法,通过对匹配滤波器的参考窗宽度和延时进行二维搜索,输出脉压后的二维幅度分布;然后,基于该幅度分布对干扰切片宽度和转发周期进行估计;并通过分析切片宽度与转发周期之间的关系,实现典型转发式干扰的辨识。仿真结果显示该方法在干噪比(INR:Interference to Noise Ratio)大于5 dB时,正确辨识率不低于90%。展开更多
文摘Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.
文摘基于数字射频存储器(DRFM:Digital Radio Frequency Memory)的间歇采样转发式干扰与雷达发射信号相参,可以获得部分脉压增益,同时具有压制与欺骗两种干扰效果,对现代雷达极具威胁。干扰辨识是进行有效干扰抑制的前提。本文提出一种滑动截断匹配滤波(STMF:Sliding-Truncation Matched Filter)方法,通过对匹配滤波器的参考窗宽度和延时进行二维搜索,输出脉压后的二维幅度分布;然后,基于该幅度分布对干扰切片宽度和转发周期进行估计;并通过分析切片宽度与转发周期之间的关系,实现典型转发式干扰的辨识。仿真结果显示该方法在干噪比(INR:Interference to Noise Ratio)大于5 dB时,正确辨识率不低于90%。