Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must b...Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must be degraded in varying degrees due to the limited calculation accuracy of hardware equipment. To assess the dynamic properties of digital chaos, we design a periodic cycle location algorithm(PCLA) from a new perspective to analyze the dynamic degradation of digital chaos. The PCLA can divide the state-mapping graph of digital chaos into several connected subgraphs for the purpose of locating all fixed points and periodic limit cycles contained in a digital chaotic map. To test the versatility and availability of our proposed algorithm, the periodic distribution and security of 1-D logistic maps and 2-D Baker maps are analyzed in detail. Moreover, this algorithm is helpful to the design of anti-degradation algorithms for digital chaotic dynamics. These related studies can promote the application of chaos in engineering practice.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62101178)the Fundamental Research Funds for the Higher Institutions in Heilongjiang Province,China (Grant No.2020-KYYWF-1033)。
文摘Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must be degraded in varying degrees due to the limited calculation accuracy of hardware equipment. To assess the dynamic properties of digital chaos, we design a periodic cycle location algorithm(PCLA) from a new perspective to analyze the dynamic degradation of digital chaos. The PCLA can divide the state-mapping graph of digital chaos into several connected subgraphs for the purpose of locating all fixed points and periodic limit cycles contained in a digital chaotic map. To test the versatility and availability of our proposed algorithm, the periodic distribution and security of 1-D logistic maps and 2-D Baker maps are analyzed in detail. Moreover, this algorithm is helpful to the design of anti-degradation algorithms for digital chaotic dynamics. These related studies can promote the application of chaos in engineering practice.