With respect to constitutive models for continuum modeling applications, the post-yield domain remainsthe area of greatest uncertainty. Recent studies based on laboratory testing have led to thedevelopment of a number...With respect to constitutive models for continuum modeling applications, the post-yield domain remainsthe area of greatest uncertainty. Recent studies based on laboratory testing have led to thedevelopment of a number of models for brittle rock dilation, which account for both the plastic shearstrain and confining stress dependencies of this phenomenon. Although these models are useful inproviding an improved understanding of how dilatancy evolves during a compression test, there hasbeen relatively little work performed examining their validity for modeling brittle rock yield in situ. Inthis study, different constitutive models for rock dilation are reviewed and then tested, in the context of anumber of case studies, using a continuum finite-difference approach (FLAC). The uncertainty associatedwith the modeling of brittle fracture localization is addressed, and the overall ability of mobilizeddilation models to replicate in situ deformation measurements and yield patterns is evaluated. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
基金funding support from the Natural Sciences and Engineering Research Council of Canada (NSERC)the Center for Excellence in Mining Innovation (CEMI)the Nuclear Waste Management Organization of Canada (NWMO)
文摘With respect to constitutive models for continuum modeling applications, the post-yield domain remainsthe area of greatest uncertainty. Recent studies based on laboratory testing have led to thedevelopment of a number of models for brittle rock dilation, which account for both the plastic shearstrain and confining stress dependencies of this phenomenon. Although these models are useful inproviding an improved understanding of how dilatancy evolves during a compression test, there hasbeen relatively little work performed examining their validity for modeling brittle rock yield in situ. Inthis study, different constitutive models for rock dilation are reviewed and then tested, in the context of anumber of case studies, using a continuum finite-difference approach (FLAC). The uncertainty associatedwith the modeling of brittle fracture localization is addressed, and the overall ability of mobilizeddilation models to replicate in situ deformation measurements and yield patterns is evaluated. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.