期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Adaptive Dimensional Learning with a Tolerance Framework for the Differential Evolution Algorithm 被引量:2
1
作者 Wei Li Xinqiang Ye +1 位作者 Ying Huang Soroosh Mahmoodi 《Complex System Modeling and Simulation》 2022年第1期59-77,共19页
The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE i... The Differential Evolution(DE)algorithm,which is an efficient optimization algorithm,has been used to solve various optimization problems.In this paper,adaptive dimensional learning with a tolerance framework for DE is proposed.The population is divided into an elite subpopulation,an ordinary subpopulation,and an inferior subpopulation according to the fitness values.The ordinary and elite subpopulations are used to maintain the current evolution state and to guide the evolution direction of the population,respectively.The inferior subpopulation learns from the elite subpopulation through the dimensional learning strategy.If the global optimum is not improved in a specified number of iterations,a tolerance mechanism is applied.Under the tolerance mechanism,the inferior and elite subpopulations implement the restart strategy and the reverse dimensional learning strategy,respectively.In addition,the individual status and algorithm status are used to adaptively adjust the control parameters.To evaluate the performance of the proposed algorithm,six state-of-the-art DE algorithm variants are compared on the benchmark functions.The results of the simulation show that the proposed algorithm outperforms other variant algorithms regarding function convergence rate and solution accuracy. 展开更多
关键词 Differential Evolution(DE) tolerance mechanism dimensional learning parameter adaptation continuous optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部