A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theD...A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theDMS flux over sea surface is assigned from gas exchange models that deped on sea surface wind speed and DMS concentration in surface water. Photolysis rates at various altitudes are calculated as a function of Solar zenith angle, andthe radiation calculation includes ozone absorption,surface reflection and molecular scattering.The simulated results of the DMS diurnal cycle are in good agreement with the observations. Sensitivity tests ofthe model indicate that the concentration of the DMS in the marine surface layer appears to be affected by a combination of chemical processes and meteorological conditions. In addition, photochemical processes are rather important.The reaction of the DMS with OH radical, the heterogeneous conversion of SO2 and the deposition of NSS-SO andthe methanesulfonic acid (MSA) are critical factors of controlling the DMS, SO2, NSS-SO and the MSA concentrations and distributions in the atmosphere.The DMS concentration in air is directly proportional to surface windspeed, but it is inversely proportional to boundary layer height in the convective boundary layer. The distributions ofthe DMS concentrations in air are strongly influenced by atmospheric stratification in stable conditions.展开更多
文摘A one-dimensional photochemical model with parameterized vertical eddy diffusion is used to simulate the dimethyl sulfide (DMS) in the marine atmospheric boundary layer near the equator. The boundary condition of theDMS flux over sea surface is assigned from gas exchange models that deped on sea surface wind speed and DMS concentration in surface water. Photolysis rates at various altitudes are calculated as a function of Solar zenith angle, andthe radiation calculation includes ozone absorption,surface reflection and molecular scattering.The simulated results of the DMS diurnal cycle are in good agreement with the observations. Sensitivity tests ofthe model indicate that the concentration of the DMS in the marine surface layer appears to be affected by a combination of chemical processes and meteorological conditions. In addition, photochemical processes are rather important.The reaction of the DMS with OH radical, the heterogeneous conversion of SO2 and the deposition of NSS-SO andthe methanesulfonic acid (MSA) are critical factors of controlling the DMS, SO2, NSS-SO and the MSA concentrations and distributions in the atmosphere.The DMS concentration in air is directly proportional to surface windspeed, but it is inversely proportional to boundary layer height in the convective boundary layer. The distributions ofthe DMS concentrations in air are strongly influenced by atmospheric stratification in stable conditions.