This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 ...In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 nm and 514 nm are presented. It was observed that the material exhibited reverse saturation absorption and self defocusing behavior. It was found that the increase in solution concentration resulted in linear increase of the nonlinear refractive index. A pump and probe technique was used to obtain the absorption spectrum of triplet state. Furthermore the nonlinear absorption effect was used to demonstrate all optical switching.展开更多
Silver nanoparticles were synthesized using an aqueous extract of cinnamon berks (cinnamon cassia) as a reducer and stabilizer. The synthesized silver nanoparticles were characterized using UV-Vis spectrometry and Tra...Silver nanoparticles were synthesized using an aqueous extract of cinnamon berks (cinnamon cassia) as a reducer and stabilizer. The synthesized silver nanoparticles were characterized using UV-Vis spectrometry and Transmission Electron Microscopy (TEM), which revealed the nano nature of the particles. Nonlinear absorption and nonlinear refraction were measured using a Z-scan technique at different wavelengths with CW lasers. The third order nonlinear susceptibility was found to be between (1.5 to 22) ×10-14 m2/V2. The nonlinear property of the synthesized silver nanoparticles was used to demonstrate optical limiting and all-optical switching. An optical limiting threshold was found to be 0.1 mW at 632.8 nm.展开更多
A new all optical flip-flop based on a 3-sections nonlinear semiconductor DFB laser structure is proposed and simulated. The operation of the device does not require a holding beam. Electrical current injection into a...A new all optical flip-flop based on a 3-sections nonlinear semiconductor DFB laser structure is proposed and simulated. The operation of the device does not require a holding beam. Electrical current injection into an active layer provides optical gain to the laser mode. The wave-guiding layer consists of a linear grating section centered between 2 detuned nonlinear grating sections. The average refractive index in the nonlinear sections is slightly higher than the refractive index of the middle section. A negative nonlinear refractive index coefficient exists along the nonlinear sections. In the “OFF” state, the DFB structure does not provide enough optical feedback to lase due to the detuned sections. At high light intensity in structure, “ON” state, detuning decreases and the DFB structure allows for a laser mode that sustains the decrease in detuning to exist. The nonlinearity is provided by direct photon absorption at the Urbach tail. Numerical simulations using GPGPU computing show nanoseconds transition times between “OFF” and “ON” states.展开更多
Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepare...Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.展开更多
We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelen...We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelength is assumed to be 1550 nm. The simulation results show a ?14.66 dB extinction ratio. Downscaling the silicon waveguide in MIM structure leads to enhancement of the effective Kerr nonlinearity due to tight mode confinement. Also, using O+ ions implanted into silicon, the switching time less than 10 ps and a delay time less than 8 fs are achieved. The overall length of the switch is 550 nm.展开更多
The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically.The results show that the optical lattices can be avail...The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically.The results show that the optical lattices can be available for all- optical soliton switching through utilization for length-scale competition effects.And through longitudinal exponential- asymptotic modulation for the linear refractive index,the properties of soliton switching in the optical lattices can be improved.The number of output channels of soliton switching can be controlled by the parameters such as incident angle,asymptotic rate of longitudinal modulation,guiding parameter and form factor.展开更多
3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, et...3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355 nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching.展开更多
We present numerical studies on the switching characteristics of a fiber Bragg grating (FBG) with modulation in the third order nonlinear index of refraction along it’s length. The FBG is operating in a continuous wa...We present numerical studies on the switching characteristics of a fiber Bragg grating (FBG) with modulation in the third order nonlinear index of refraction along it’s length. The FBG is operating in a continuous wave regime (CW). This study was done taking into account the possible asymmetry brought by the non harmonic modulation of the nonlinearity, leading to different reflection and transmission characteristics, that depend on the direction of propagation along the modulated nonlinear FBG. This phenomenon may be useful for applications like an optical isolator. It was found that for a set of values of the modulation parameter, the FBG can exhibit multistable states. The numerical studies were obtained starting from the coupled-mode equations solved from the coupled-mode theory and simulated using the fourth-order Runge-Kutta method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
文摘In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 nm and 514 nm are presented. It was observed that the material exhibited reverse saturation absorption and self defocusing behavior. It was found that the increase in solution concentration resulted in linear increase of the nonlinear refractive index. A pump and probe technique was used to obtain the absorption spectrum of triplet state. Furthermore the nonlinear absorption effect was used to demonstrate all optical switching.
文摘Silver nanoparticles were synthesized using an aqueous extract of cinnamon berks (cinnamon cassia) as a reducer and stabilizer. The synthesized silver nanoparticles were characterized using UV-Vis spectrometry and Transmission Electron Microscopy (TEM), which revealed the nano nature of the particles. Nonlinear absorption and nonlinear refraction were measured using a Z-scan technique at different wavelengths with CW lasers. The third order nonlinear susceptibility was found to be between (1.5 to 22) ×10-14 m2/V2. The nonlinear property of the synthesized silver nanoparticles was used to demonstrate optical limiting and all-optical switching. An optical limiting threshold was found to be 0.1 mW at 632.8 nm.
文摘A new all optical flip-flop based on a 3-sections nonlinear semiconductor DFB laser structure is proposed and simulated. The operation of the device does not require a holding beam. Electrical current injection into an active layer provides optical gain to the laser mode. The wave-guiding layer consists of a linear grating section centered between 2 detuned nonlinear grating sections. The average refractive index in the nonlinear sections is slightly higher than the refractive index of the middle section. A negative nonlinear refractive index coefficient exists along the nonlinear sections. In the “OFF” state, the DFB structure does not provide enough optical feedback to lase due to the detuned sections. At high light intensity in structure, “ON” state, detuning decreases and the DFB structure allows for a laser mode that sustains the decrease in detuning to exist. The nonlinearity is provided by direct photon absorption at the Urbach tail. Numerical simulations using GPGPU computing show nanoseconds transition times between “OFF” and “ON” states.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
文摘We propose and analyze a submicron stub-assisted ultrafast all-optical plasmonic switch based on nonlinear MIM waveguide. It is constructed by two silicon stub filters sandwiched by silver cladding. The signal wavelength is assumed to be 1550 nm. The simulation results show a ?14.66 dB extinction ratio. Downscaling the silicon waveguide in MIM structure leads to enhancement of the effective Kerr nonlinearity due to tight mode confinement. Also, using O+ ions implanted into silicon, the switching time less than 10 ps and a delay time less than 8 fs are achieved. The overall length of the switch is 550 nm.
基金supported by National Natural Science Foundation of China under Grant No.10574058the Scientific Research Foundation of Ningbo under Grant No.2008A610001sponsored by K.C.Wong Magna Fund in Ningbo University
文摘The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically.The results show that the optical lattices can be available for all- optical soliton switching through utilization for length-scale competition effects.And through longitudinal exponential- asymptotic modulation for the linear refractive index,the properties of soliton switching in the optical lattices can be improved.The number of output channels of soliton switching can be controlled by the parameters such as incident angle,asymptotic rate of longitudinal modulation,guiding parameter and form factor.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025)
文摘3-hydroxyflavone (3-HF) is an organic molecule with an excited-stated intramolecular proton transfer (ESIPT) effect. All-optical switchings and beam deflections of 3-HF in three kinds of solvents (cyclohexane, ethanol and dimethyl sulfoxide) have been investigated by using the third-harmonic generation (355 nm) of a mode-locked Nd:YAG laser as a pump beam and a continuous-wave (cw) He-Ne laser (632.8 nm) as a probe beam. The nonlinear refractive indices of 3-HF in the three different solvents are determined by using the Z-scan technique under an ultraviolet (UV) pump beam at a wavelength of 355 nm. It has been found that the optical switching and beam deflection effects result from the change in refractive index of 3-HF under the irradiation of the pump beam. On the basis of the analyses of absorption spectra and fluorescence spectra, we conclude that the change in refractive index of 3-HF is due to not the thermal effect but the ESIPT effect of 3-HF under the pump beam. As the ESIPT is exceedingly fast, 3-HF might be an excellent candidate for high-speed optical switching.
基金Conselho Nacional de Desenvolvimento Cientifico e Tecnologico CNPq,CAPES and FUNCAP
文摘We present numerical studies on the switching characteristics of a fiber Bragg grating (FBG) with modulation in the third order nonlinear index of refraction along it’s length. The FBG is operating in a continuous wave regime (CW). This study was done taking into account the possible asymmetry brought by the non harmonic modulation of the nonlinearity, leading to different reflection and transmission characteristics, that depend on the direction of propagation along the modulated nonlinear FBG. This phenomenon may be useful for applications like an optical isolator. It was found that for a set of values of the modulation parameter, the FBG can exhibit multistable states. The numerical studies were obtained starting from the coupled-mode equations solved from the coupled-mode theory and simulated using the fourth-order Runge-Kutta method.
基金supported by the National Natural Science Foundation of China(60778037,50772059,11004123)Foundation of National Excellent Doctoral Dissertation of China(200539)+2 种基金Natural Science Foundation of Shandong Province,China(ZR2009GQ007)China Postdoctoral Science Foundation(20100470040)Youth Scientist Fund of Shandong Province,China(BS2011CL025)~~