Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentratio...Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.展开更多
Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in...Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.展开更多
A chemoreduction-purge-and-trap gas chromatographic method has been developed for the deter-mination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide...A chemoreduction-purge-and-trap gas chromatographic method has been developed for the deter-mination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide (DMS) by sodium borohydride and then the produced DMS was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. Under the optimum conditions, 97% DMSO was reduced in the standard solution samples with a standard deviation of 5% (n=5). The detection limit of DMSO was 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nmol/L for a 40 ml sample. This method was applied to determine the dissolved DMSO (DMSOd) and particulate DMSO (DMSOp) con- centrations in the surface seawater of the Jiaozhou Bay, and the results showed that the DMSOd and DMSOp concentrations varied from 16.8 to 921.1 nmol/L (mean:165.2 nmol/L) and from 8.0 to 162.4 nmol/L (mean: 57.7 nmol/L), respectively. The high concentrations of DMSOp were generally found in productive regions. Consequently, a significant correlation was found between the concentrations of DMSOp and chlorophyll a, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMSOp in the bay. Moreover, in the study area, the concentrations of DMSOd were significantly correlated with the levels of DMS, implying that the production of DMSOd is mainly via photochemical and biological oxidation of DMS.展开更多
Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental...Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental results indicated that the electroreducation of Bi(III)to Bi(0) was irreversible on Pt and Cu electrodes. The diffusion coefficient and electron transfercoefficient of Bi(III) in 0.01 mol.L^(-1) Bi(NO_3)_3-0.l mol.L^(-1) LiClO_4-DMSO system at 303 Kwere 1.75 X 10^(-6) cm^2.s^1 and 0.147 respectively.展开更多
The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indica...The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).展开更多
Cyclic voltammetry and chronoamperometry were used to investigate theelectrochemical behavior of Pr^(3+) ions in a system of 0.01 mol centre dot dm^(-3) Pr(CH_3SO_3)_3 +0.01 mol centre dot dm^(-3) FeCl_2 + 3.0 mol cen...Cyclic voltammetry and chronoamperometry were used to investigate theelectrochemical behavior of Pr^(3+) ions in a system of 0.01 mol centre dot dm^(-3) Pr(CH_3SO_3)_3 +0.01 mol centre dot dm^(-3) FeCl_2 + 3.0 mol centre dot dm^(-3) urea + DMSO on a R electrode. Someelectrochemical parameters were measured. Potentiostatic depositions between -1.6 and -2.4 V wereapplied to deposit Pr-Fe films in urea-DMSO mixed solution. The Pr content in the alloy films was inthe range of 34.89 wt. percent to 37.15 wt. percent. The Pr-Fe alloy films are proven to beamorphous by XRD (X-ray diffraction).展开更多
Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate t...Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0 01 mol/L FeCl 2 0 1 mol/L LiClO 4 DMSO system at 303 K were 1 70×10 -10 m 2/s and 0 08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0 01 mol/L ErCl 3 0 1mol/L LiClO 4 DMSO system at 303 K were 1 47×10 -10 m 2/s and 0 108 respectively. The homogeneous, strong adhesive Er Fe alloy films containing Er of 31 39%-42 12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl 3 FeCl 2 LiClO 4 DMSO system at -1 75--2 50 V( vs . SCE).展开更多
基金The National Natural Science Foundation of China under contract Nos 41576073,41306069 and 41320104008the National Key Research and Development Program of China under contract No.2016YFA0601301
文摘Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.
基金The National Natural Science Foundation of China under contract Nos 41030858 and 40525017the Changjiang Scholars Program,Ministry of Education of China+1 种基金the National"973"Project under contract No.2010CB428904the"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘A chemoreduction-purge-and-trap gas chromatographic method has been developed for the deter-mination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide (DMS) by sodium borohydride and then the produced DMS was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. Under the optimum conditions, 97% DMSO was reduced in the standard solution samples with a standard deviation of 5% (n=5). The detection limit of DMSO was 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nmol/L for a 40 ml sample. This method was applied to determine the dissolved DMSO (DMSOd) and particulate DMSO (DMSOp) con- centrations in the surface seawater of the Jiaozhou Bay, and the results showed that the DMSOd and DMSOp concentrations varied from 16.8 to 921.1 nmol/L (mean:165.2 nmol/L) and from 8.0 to 162.4 nmol/L (mean: 57.7 nmol/L), respectively. The high concentrations of DMSOp were generally found in productive regions. Consequently, a significant correlation was found between the concentrations of DMSOp and chlorophyll a, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMSOp in the bay. Moreover, in the study area, the concentrations of DMSOd were significantly correlated with the levels of DMS, implying that the production of DMSOd is mainly via photochemical and biological oxidation of DMS.
基金This project is financially supported by the Thousand-Hundred-Ten-talent Project Foundation of Guangdong Province Education Office (No. 00-079-421005)
文摘Cyclic voltammetry, chronoamperometry and chronopotentiometry were used toinvestigate the electrochemical behaviors of Bi(III) in Bi(NO_3)_3-LiClO_4-DMSO (dimethylsulfoxide)system on Pt and Cu electrodes. Experimental results indicated that the electroreducation of Bi(III)to Bi(0) was irreversible on Pt and Cu electrodes. The diffusion coefficient and electron transfercoefficient of Bi(III) in 0.01 mol.L^(-1) Bi(NO_3)_3-0.l mol.L^(-1) LiClO_4-DMSO system at 303 Kwere 1.75 X 10^(-6) cm^2.s^1 and 0.147 respectively.
文摘The cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behaviors of Er(Ⅲ) and Ni(Ⅱ) in LiClO 4 DMSO(dimethylsufoxide) system on Pt and Cu electrodes. Experimental results indicated that the reduction of Er(Ⅲ) to Er and Ni(Ⅱ) to Ni were irreversible in one step on Pt and Cu electrodes. The diffusion coefficient and electron transfer coefficient of Er(Ⅲ) in 0.01 mol·L -1 ErCl 3 -0.1 mol·L -1 LiClO 4 DMSO system at 303K were 1.47×10 -10 m 2·s -1 and 0.108 respectively, and the diffusion coefficient and electron transfer coefficient of Ni(Ⅱ) in 0.01 mol·L -1 NiCl 2-0.1 mol·L -1 LiClO 4 DMSO system at 303K were 3.38×10 -10 m 2·s -1 and 0.160 respectively. The homogeneous, strong adhesive Er Ni alloy films with metallic lu- stre was prepared by potentiostatic electrolysis on Cu electrode in ErCl 3 NiCl 2 LiClO 4 DMSO system at -1.90~ -2.55 V (vs SCE).
文摘Cyclic voltammetry and chronoamperometry were used to investigate theelectrochemical behavior of Pr^(3+) ions in a system of 0.01 mol centre dot dm^(-3) Pr(CH_3SO_3)_3 +0.01 mol centre dot dm^(-3) FeCl_2 + 3.0 mol centre dot dm^(-3) urea + DMSO on a R electrode. Someelectrochemical parameters were measured. Potentiostatic depositions between -1.6 and -2.4 V wereapplied to deposit Pr-Fe films in urea-DMSO mixed solution. The Pr content in the alloy films was inthe range of 34.89 wt. percent to 37.15 wt. percent. The Pr-Fe alloy films are proven to beamorphous by XRD (X-ray diffraction).
基金Supported by the Thousand- Hundred- Ten Talent Project Foundation of Guangdong Province Education Office(No.0 0 - 0 79- 4 2 10 0 5 ) and State Key L ab of Rare Material Chem istry and Applications
文摘Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical behavior of Fe(Ⅱ) and Er(Ⅲ) in a LiClO 4 DMSO(dimethylsufoxide) system at Pt and Cu electrodes. Experimental results indicate that the reductions of Fe(Ⅱ) to Fe(0) and Er(Ⅲ) to Er(0) were irreversible at Pt and Cu electrodes. The diffusion coefficient and the electron transfer coefficient of Fe(Ⅱ) in a 0 01 mol/L FeCl 2 0 1 mol/L LiClO 4 DMSO system at 303 K were 1 70×10 -10 m 2/s and 0 08 respectively, the diffusion coefficient and the electron transfer coefficient of Er(Ⅲ) in a 0 01 mol/L ErCl 3 0 1mol/L LiClO 4 DMSO system at 303 K were 1 47×10 -10 m 2/s and 0 108 respectively. The homogeneous, strong adhesive Er Fe alloy films containing Er of 31 39%-42 12% in mass fraction with metallic lustre were prepared by potentiostatic electrolysis on a Cu electrode in a ErCl 3 FeCl 2 LiClO 4 DMSO system at -1 75--2 50 V( vs . SCE).