Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,...Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2℃, respectively. The TSADT and Tb of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability. Keywords Tetrazine compound; Dinitrosalicylic acid(DNS); Crystal structure; Thermal behavior; Thermal safety展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21673179,21504067) and the National Students' Innovation and Entrepreneurship Training Program, China(No.201710697038).
文摘Two energetic salts, DPHT.DNS-H20(1) and DHT.2DNS.2H20(2)[DPHT=3-(3,5-dimethyl-lH-pyrazol- 1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-l,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2℃, respectively. The TSADT and Tb of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability. Keywords Tetrazine compound; Dinitrosalicylic acid(DNS); Crystal structure; Thermal behavior; Thermal safety