We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded ...We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded for a diodepumped laser system.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
This paper demonstrates the passively mode-locked Nd:GdVO4 laser operating on the ^4F3/2-^4I9/2 transition at 912 nm by using a semiconductor saturable-absorber mirror for passive mode locking, stable continuous wave...This paper demonstrates the passively mode-locked Nd:GdVO4 laser operating on the ^4F3/2-^4I9/2 transition at 912 nm by using a semiconductor saturable-absorber mirror for passive mode locking, stable continuous wave modelocked 912nm laser was achieved with a repetition rate of 176 MHz. At the incident pump power of 17.7W, 22.6mW average output power of stable mode-locked laser was obtained with a slope efficiency of 0.3%.展开更多
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. Accordin...This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.展开更多
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-seg...A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.展开更多
Detailed power and spectral analysis of a diode-pumped c-cut Pbnm 3 at.% Tm-doped yttrium aluminum perovskite(Tm:YAP) laser in a continuous wave(CW) operation is presented. The laser was experimentally examined in ter...Detailed power and spectral analysis of a diode-pumped c-cut Pbnm 3 at.% Tm-doped yttrium aluminum perovskite(Tm:YAP) laser in a continuous wave(CW) operation is presented. The laser was experimentally examined in terms of the dependence on the transmittance and radius of curvature of the output coupling mirrors.At room temperature, for an output coupling transmission of 10.8%, the maximum output power of 6.35 W was obtained under a total absorbed pump power of 13.67 W with an optical-to-optical conversion efficiency of 46.5%. The highest slope efficiency of 60.4% was indicated. A detailed spectral analysis was presented. For its dependence on output coupler transmission, the Tm:YAP laser generates wavelengths at approximately 1940 nm or 1990 nm.展开更多
Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz re...Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate(0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ~5 ps duration,1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including atwavelength interferometry of the active region under >1 kW average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power(1 J, 1 k Hz) is reported.展开更多
A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W ...A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.展开更多
In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100 X,being built at the Central Laser Facility(CLF). This 1 kW average power diode-pumped solid-state lase...In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100 X,being built at the Central Laser Facility(CLF). This 1 kW average power diode-pumped solid-state laser(DPSSL) is based on a master oscillator power amplifier(MOPA) design, which includes two cryogenic gas cooled amplifier stages based on DiPOLE multi-slab ceramic Yb:YAG amplifier technology developed at the CLF. The laser will produce pulses between 2 and 15 ns in duration with precise, arbitrarily selectable shapes, at pulse repetition rates up to 10 Hz, allowing real-time shape optimization for compression experiments. Once completed, the laser will be delivered to the European X-ray Free Electron Laser(XFEL) facility in Germany as a UK-funded contribution in kind, where it will be used to study extreme states of matter at the High Energy Density(HED) instrument.展开更多
Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index,and causes thermal expansion and stress,eventually leading to spatial...Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index,and causes thermal expansion and stress,eventually leading to spatial phase aberrations,or even permanent material damage.For this purpose,knowledge of the 3D spatio-temporal thermal profile,which can currently only be retrieved via numerical simulations,is critical for joule-class laser amplifiers to reveal potentially dangerous thermal features within the pumped active materials.In this investigation,a detailed,spatio-temporal numerical simulation was constructed and tested for accuracy against surface thermal measurements of various endpumped Yb^3+-doped laser-active materials.The measurements and simulations show an excellent agreement and the model was successfully applied to a joule-class Yb3+-based amplifier currently operating in the POLARIS laser system at the Friedrich-Schiller-University and Helmholtz-Institute Jena in Germany.展开更多
The Laboratory for Intense Lasers(L2I) is a research centre in optics and lasers dedicated to experimental research in high intensity laser science and technology and laser plasma interaction. Currently the laboratory...The Laboratory for Intense Lasers(L2I) is a research centre in optics and lasers dedicated to experimental research in high intensity laser science and technology and laser plasma interaction. Currently the laboratory is undergoing an upgrade with the goal of increasing the versatility of the laser systems available to the users, as well as increasing the pulse repetition rate. In this paper we review the current status of the laser research and development programme of this facility, namely the upgraded capability and the recent progress towards the installation of an ultrashort, diode-pumped OPCPA laser system.展开更多
Further advancement of high-energy pulsed lasers requires a parallel development of appropriate optical components.Several different optical components, such as mirrors and antireflection-coated windows, which are ess...Further advancement of high-energy pulsed lasers requires a parallel development of appropriate optical components.Several different optical components, such as mirrors and antireflection-coated windows, which are essential for the design of Hi LASE high average power lasers were tested. The following paper summarizes results on the measurements of laser-induced damage threshold of such components, and clearly shows their capabilities and limitations for such a demanding application.展开更多
Optical damages, which severely degrade the output energy performance of Nd:glass regenerative amplifiers, are discussed in detail in this paper. By a series of experiments, it has been confirmed that these damages re...Optical damages, which severely degrade the output energy performance of Nd:glass regenerative amplifiers, are discussed in detail in this paper. By a series of experiments, it has been confirmed that these damages result from laser-induced contamination. Based on this work, several improvements are made to boost output energy performance of the regenerative amplifier. The output energy of the regenerative amplifier after improvements declines 4% after 1000 h of operation, much less than it used to, 60% after 560 h of operation.展开更多
A diode-pumped master oscillator power amplifier system based on a cryogenic Yb:YAG active-mirror laser has been developed.The performances of the laser amplifier at low temperature and room temperature have been inve...A diode-pumped master oscillator power amplifier system based on a cryogenic Yb:YAG active-mirror laser has been developed.The performances of the laser amplifier at low temperature and room temperature have been investigated theoretically and experimentally.A maximum output energy of 3.05 J with an optical-to-optical efficiency of 14.7% has been achieved by using the master amplifier system.展开更多
文摘We report on the successful demonstration of a 150 J nanosecond pulsed cryogenic gas cooled,diode-pumped multi-slab Yb:YAG laser operating at 1 Hz.To the best of our knowledge,this is the highest energy ever recorded for a diodepumped laser system.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60225005, 60308001, 60321003 and 60490280).
文摘This paper demonstrates the passively mode-locked Nd:GdVO4 laser operating on the ^4F3/2-^4I9/2 transition at 912 nm by using a semiconductor saturable-absorber mirror for passive mode locking, stable continuous wave modelocked 912nm laser was achieved with a repetition rate of 176 MHz. At the incident pump power of 17.7W, 22.6mW average output power of stable mode-locked laser was obtained with a slope efficiency of 0.3%.
基金Project supported by the Program of Excellent Team in Harbin Institute of Technology, China (Grant No 60878011)
文摘This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.
基金Project supported by the National Defense Pre-Research Foundation of China(Grant No.9140A020105)
文摘A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with Mx2= 4.82, My2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.
基金supported by the Ministry of National Defense of Poland (No. GBMON/13-992/2018/WAT)。
文摘Detailed power and spectral analysis of a diode-pumped c-cut Pbnm 3 at.% Tm-doped yttrium aluminum perovskite(Tm:YAP) laser in a continuous wave(CW) operation is presented. The laser was experimentally examined in terms of the dependence on the transmittance and radius of curvature of the output coupling mirrors.At room temperature, for an output coupling transmission of 10.8%, the maximum output power of 6.35 W was obtained under a total absorbed pump power of 13.67 W with an optical-to-optical conversion efficiency of 46.5%. The highest slope efficiency of 60.4% was indicated. A detailed spectral analysis was presented. For its dependence on output coupler transmission, the Tm:YAP laser generates wavelengths at approximately 1940 nm or 1990 nm.
基金supported by the U.S. Department of Energy Accelerator Stewardship programme, Office of High Energy Physics, Office of Science under award DE-SC0016136support by the U.S. Department of Energy, Office of Science SBIR programme under award DE-SC0011375
文摘Recent results in the development of diode-driven high energy, high repetition rate, picosecond lasers, including the demonstration of a cryogenic Yb:YAG active mirror amplifier that produces 1.5 J pulses at 500 Hz repetition rate(0.75 kW average power) are reviewed. These pulses are compressed resulting in the generation of ~5 ps duration,1 J pulses with 0.5 kW average power. A full characterization of this high power cryogenic amplifier, including atwavelength interferometry of the active region under >1 kW average power pump conditions, is presented. An initial demonstration of operation at 1 kW average power(1 J, 1 k Hz) is reported.
基金supported by the National Natural Science Foundation of China(Nos.61405126 and 61704112)the Science and Technology Planning Project of Shenzhen Municipality(Nos.ZDSYS201707271014468 and JCYJ20170817094438146)the Educational Commission of Guangdong Province(No.2016KCXTD006).
文摘A power-scaled laser operation of Pr:YLi F4(YLF)crystal at 720.9 nm pumped by a 443.6 nm laser diode(LD)module was demonstrated.The 20 W module was used to pump the Pr:YLF crystal,and a maximum output power of 3.03 W with slope efficiency of 30.04%was obtained.In addition,a 5 W blue LD was also used to pump the Pr:YLF laser,and a maximum output power of 0.72 W was obtained at room temperature.The output power was limited by the wavelength mismatch between the single-emitter LD and the absorption peak of the crystal.
基金funded by the NEWTON China–UK Joint Research Project on Laser-driven Ion Acceleration and Novel Terahertz Radiation
文摘In this paper we review the design and development of a 100 J, 10 Hz nanosecond pulsed laser, codenamed DiPOLE100 X,being built at the Central Laser Facility(CLF). This 1 kW average power diode-pumped solid-state laser(DPSSL) is based on a master oscillator power amplifier(MOPA) design, which includes two cryogenic gas cooled amplifier stages based on DiPOLE multi-slab ceramic Yb:YAG amplifier technology developed at the CLF. The laser will produce pulses between 2 and 15 ns in duration with precise, arbitrarily selectable shapes, at pulse repetition rates up to 10 Hz, allowing real-time shape optimization for compression experiments. Once completed, the laser will be delivered to the European X-ray Free Electron Laser(XFEL) facility in Germany as a UK-funded contribution in kind, where it will be used to study extreme states of matter at the High Energy Density(HED) instrument.
基金funding from the European Union’s Horizon 2020 Research and Innovation Programme (LASERLAB-EUROPE, Grant No. 654148)from the European Union (EFRE) through the Thuringian Ministry for Economic Affairs, Science and Digital Society (2016FE9058)from the Bundesministerium für Bildung und Forschung (BMBF) (03ZIK445, 05P15SJFA1, 03Z1H531 and 03VNE2068D)
文摘Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index,and causes thermal expansion and stress,eventually leading to spatial phase aberrations,or even permanent material damage.For this purpose,knowledge of the 3D spatio-temporal thermal profile,which can currently only be retrieved via numerical simulations,is critical for joule-class laser amplifiers to reveal potentially dangerous thermal features within the pumped active materials.In this investigation,a detailed,spatio-temporal numerical simulation was constructed and tested for accuracy against surface thermal measurements of various endpumped Yb^3+-doped laser-active materials.The measurements and simulations show an excellent agreement and the model was successfully applied to a joule-class Yb3+-based amplifier currently operating in the POLARIS laser system at the Friedrich-Schiller-University and Helmholtz-Institute Jena in Germany.
基金supported by Fundao para a Ciência e a Tecnologia,Laserlab-Europe(EC’s FP7,grant agreement no.284464)funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053
文摘The Laboratory for Intense Lasers(L2I) is a research centre in optics and lasers dedicated to experimental research in high intensity laser science and technology and laser plasma interaction. Currently the laboratory is undergoing an upgrade with the goal of increasing the versatility of the laser systems available to the users, as well as increasing the pulse repetition rate. In this paper we review the current status of the laser research and development programme of this facility, namely the upgraded capability and the recent progress towards the installation of an ultrashort, diode-pumped OPCPA laser system.
基金funding from LASERLAB-EUROPE (grant agreement no.284464,EC’s Seventh Framework Programme)co-financed by the European Regional Development Fund+2 种基金the European Social Fundthe state budget of the Czech Republic (project HiLASE:CZ.1.05/ 2.1.00/01.0027,project DPSSLasers:CZ.1.07/2.3.00/20.0143,project Postdok:CZ.1.07/2.3.00/30.0057)partially supported by the grant RVO 68407700
文摘Further advancement of high-energy pulsed lasers requires a parallel development of appropriate optical components.Several different optical components, such as mirrors and antireflection-coated windows, which are essential for the design of Hi LASE high average power lasers were tested. The following paper summarizes results on the measurements of laser-induced damage threshold of such components, and clearly shows their capabilities and limitations for such a demanding application.
基金supported by National Natural Science Foundation of China under Grant No.61405211
文摘Optical damages, which severely degrade the output energy performance of Nd:glass regenerative amplifiers, are discussed in detail in this paper. By a series of experiments, it has been confirmed that these damages result from laser-induced contamination. Based on this work, several improvements are made to boost output energy performance of the regenerative amplifier. The output energy of the regenerative amplifier after improvements declines 4% after 1000 h of operation, much less than it used to, 60% after 560 h of operation.
基金the support of the Knowledge Innovation Project of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(No.61008020)
文摘A diode-pumped master oscillator power amplifier system based on a cryogenic Yb:YAG active-mirror laser has been developed.The performances of the laser amplifier at low temperature and room temperature have been investigated theoretically and experimentally.A maximum output energy of 3.05 J with an optical-to-optical efficiency of 14.7% has been achieved by using the master amplifier system.