Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a sp...Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6].展开更多
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv...CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.展开更多
In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we ana...In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.展开更多
Since Shuji Nakamura first demonstrated the nitride laser in 1996[1],the domain of semiconductor laser technology has undergone a period of remarkable growth[2,3].Al In Ga N-based diode lasers(LDs)have proven their ex...Since Shuji Nakamura first demonstrated the nitride laser in 1996[1],the domain of semiconductor laser technology has undergone a period of remarkable growth[2,3].Al In Ga N-based diode lasers(LDs)have proven their exceptional capabilities across a spectrum of pivotal applications,including high-density data storage,laser displays,laser lighting,and quantum technology[4].展开更多
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem...Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.展开更多
A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density ...A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
Quasi-two-dimensional perovskite light-emitting diodes (quasi-2D PeLEDs) are emerging as high-potential candidates for new generation of wide-color gamut displays due to their simple, low-cost solution process, and hi...Quasi-two-dimensional perovskite light-emitting diodes (quasi-2D PeLEDs) are emerging as high-potential candidates for new generation of wide-color gamut displays due to their simple, low-cost solution process, and high color purity. However, the luminescence performance of quasi-2D perovskite films is severely limited by dispersed phase distribution and excessive defect density, which are caused by excessive diffusion of nucleation sites during the perovskite growth stage. Here, the benzylphosphonic acid (BPA) molecule, owing to its strong P-O-Pb bond energy sites and strong electronegativity to PEA+, can aggregate lead-halide octahedron to grow high-dimensional phases, avoiding scattered low-dimensional phases (n = 1). The continuous gradient phase distribution will be beneficial to smooth carrier injection and effectively suppress the leakage current in PeLEDs. Meanwhile, the introduction of phosphonic acid groups will fill the vacancies of Pb ions and reduce non-radiative recombination. As a result, the maximum external quantum efficiency (EQE) of PeLEDs can be increased from 8% to 20.6% with a 514 nm light emission and a 21 nm full-width half maximum, and the device lifetime (T 50) is nearly 6-fold of the pristine sample. In addition, this strategy is also suitable for other wavelength. For example, in blue light, performance improvement is also realized that the maximum EQE of 8% and the luminance increased from 1045 to 5264 cd/m2. These results provide a feasible strategy to regulate the phase distribution and passivate the defects of quasi-2D perovskites.展开更多
Supercapacitor has been widely known as a representative electrochemical energy storage device with high power density and long lifespan.Recently,with the deeper understanding of its charge storage mechanism,unidirect...Supercapacitor has been widely known as a representative electrochemical energy storage device with high power density and long lifespan.Recently,with the deeper understanding of its charge storage mechanism,unidirectional-charging supercapacitor,also called supercapacitor diode(CAPode),is successfully developed based on the ion-sieving effect of its working electrode towards electrolyte ions.Because CAPode integrates mobile ion and mobile electron in one hybrid circuit,it has a great potential in the emerging fields of ion/electron coupling logic operations,human–machine interface,neural network interaction,and in vivo diagnosis and treatment.Accordingly,we herein elucidate the working mechanism and design philosophy of CAPode,and summarize the electrode materials that are suitable for constructing CAPode.Meanwhile,some other supercapacitor-based devices beyond CAPode are also introduced,and their potential applications are instructively presented.Finally,we outline the challenges and chances of CAPode-related techniques.展开更多
A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky(JBS)diodes under heavy ion irradiation.We propose and verify that the generation of ...A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky(JBS)diodes under heavy ion irradiation.We propose and verify that the generation of stacking faults(SFs)induced by the recombination of massive electron-hole pairs during irradiation is the cause of reverse leakage current degradation based on experiments results.The irradiation experiment was carried out based on Ta ions with high linear energy transfer(LET)of 90.5 MeV/(mg/cm^(2)).It is observed that the leakage current of the diode undergoes the permanent increase during irradiation when biased at 20%of the rated reverse voltage.Micro-PL spectroscopy and PL micro-imaging were utilized to detect the presence of SFs in the irradiated SiC JBS diodes.We combined the degraded performance of irradiated samples with SFs introduced by heavy ion irradiation.Finally,three-dimensional(3D)TCAD simulation was employed to evaluate the excessive electron-hole pairs(EHPs)concentration excited by heavy ion irradiation.It was observed that the excessive hole concentration under irradiation exceeded significantly the threshold hole concentration necessary for the expansion of SFs in the substrate.The proposed mechanism suggests that the process and material characteristics of the silicon carbide should be considered in order to reinforcing against the single event effect of SiC power devices.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
Quantum dots(QDs)have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency,narrow half-peak width,and continuously adjustable emitting wavelength.QDs light e...Quantum dots(QDs)have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency,narrow half-peak width,and continuously adjustable emitting wavelength.QDs light emitting diodes(QLEDs)are expected to become the next generation commercial display technology.This paper reviews the progress of QLED from physical mechanism,materials,to device engineering.The strategies to improve QLED performance from the perspectives of quantum dot materials and device structures are summarized.展开更多
We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an...We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.展开更多
Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum ef...Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum efficiency(EQE)of lead halide perovskites LEDs has been reported to exceed 20%[1].Even so,the toxicity of conventional lead has cast a gloomy shadow over their further application.展开更多
Metal-halide perovskites(MHPs)have emerged as a new class of semiconductors used in perovskite solar cells(PSCs)[1-5],perovskite light-emitting diodes(PeLEDs)[6-12],photo/X-ray detectors[13-16],and memristors[17,18].P...Metal-halide perovskites(MHPs)have emerged as a new class of semiconductors used in perovskite solar cells(PSCs)[1-5],perovskite light-emitting diodes(PeLEDs)[6-12],photo/X-ray detectors[13-16],and memristors[17,18].Pe LEDs can emit different light with high purity[19,20].展开更多
The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coa...The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.展开更多
文摘Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6].
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3602902)the Key Projects of National Natural Science Foundation of China(62234004)+5 种基金Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Science and Technology Innovation 2025 Major Project of Ningbo(2022Z085)Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B)Flexible Electronics Zhejiang Province Key Laboratory Fund Project(2022FEO02)Zhejiang Provincial Natural Science Foundation of China(LR21F050001).
文摘CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.
基金This work was supported by the National Key R&D Program of China(2022YFB3605104)National Natural Science Foundation of China(62250038,61904172,61974162,62034008,62074142,and 62074140)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(XDB43030101)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD016).
文摘In the past few years,many groups have focused on the research and development of GaN-based ultraviolet laser diodes(UV LDs).Great progresses have been achieved even though many challenges exist.In this article,we analyze the challenges of developing GaN-based ultraviolet laser diodes,and the approaches to improve the performance of ultraviolet laser diode are reviewed.With these techniques,room temperature(RT)pulsed oscillation of AlGaN UVA(ultraviolet A)LD has been realized,with a lasing wavelength of 357.9 nm.Combining with the suppression of thermal effect,the high output power of 3.8 W UV LD with a lasing wavelength of 386.5 nm was also fabricated.
基金funded by the National Key Research and Development Program(Grant No.2023YFB4604400)the National Natural Science Foundation of China(Grant Nos.62225405,62350002,61991443)+2 种基金the Key R&D Program of Jiangsu ProvinceChina(Grant No.BE2020004)the Collaborative Innovation Centre of Solid-State Lighting and EnergySaving Electronics。
文摘Since Shuji Nakamura first demonstrated the nitride laser in 1996[1],the domain of semiconductor laser technology has undergone a period of remarkable growth[2,3].Al In Ga N-based diode lasers(LDs)have proven their exceptional capabilities across a spectrum of pivotal applications,including high-density data storage,laser displays,laser lighting,and quantum technology[4].
基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.2021R1C1C1007997).
文摘Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3605205,2021YFB3601000,and 2021YFB3601002)the National Natural Science Foundation of China(Nos.U22A20134,62074069,62104078,and 62104079)the Science and Technology Developing Project of Jilin Province(Nos.20220201065GX,20230101053JC,and 20220101119JC).
文摘A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3606502)the National Natural Science Foundation of China(Nos.52131304 and 62004101).
文摘Quasi-two-dimensional perovskite light-emitting diodes (quasi-2D PeLEDs) are emerging as high-potential candidates for new generation of wide-color gamut displays due to their simple, low-cost solution process, and high color purity. However, the luminescence performance of quasi-2D perovskite films is severely limited by dispersed phase distribution and excessive defect density, which are caused by excessive diffusion of nucleation sites during the perovskite growth stage. Here, the benzylphosphonic acid (BPA) molecule, owing to its strong P-O-Pb bond energy sites and strong electronegativity to PEA+, can aggregate lead-halide octahedron to grow high-dimensional phases, avoiding scattered low-dimensional phases (n = 1). The continuous gradient phase distribution will be beneficial to smooth carrier injection and effectively suppress the leakage current in PeLEDs. Meanwhile, the introduction of phosphonic acid groups will fill the vacancies of Pb ions and reduce non-radiative recombination. As a result, the maximum external quantum efficiency (EQE) of PeLEDs can be increased from 8% to 20.6% with a 514 nm light emission and a 21 nm full-width half maximum, and the device lifetime (T 50) is nearly 6-fold of the pristine sample. In addition, this strategy is also suitable for other wavelength. For example, in blue light, performance improvement is also realized that the maximum EQE of 8% and the luminance increased from 1045 to 5264 cd/m2. These results provide a feasible strategy to regulate the phase distribution and passivate the defects of quasi-2D perovskites.
基金We acknowledge the financial support from the China Postdoctoral Science Foundation(Grant Nos.BX20220139 and 2021M701530)the National Natural Science Foundation of China(Grant No.61874166)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-sp50)the Science and Technology Program of Qinghai Province(Grant No.2022-ZJ-703).
文摘Supercapacitor has been widely known as a representative electrochemical energy storage device with high power density and long lifespan.Recently,with the deeper understanding of its charge storage mechanism,unidirectional-charging supercapacitor,also called supercapacitor diode(CAPode),is successfully developed based on the ion-sieving effect of its working electrode towards electrolyte ions.Because CAPode integrates mobile ion and mobile electron in one hybrid circuit,it has a great potential in the emerging fields of ion/electron coupling logic operations,human–machine interface,neural network interaction,and in vivo diagnosis and treatment.Accordingly,we herein elucidate the working mechanism and design philosophy of CAPode,and summarize the electrode materials that are suitable for constructing CAPode.Meanwhile,some other supercapacitor-based devices beyond CAPode are also introduced,and their potential applications are instructively presented.Finally,we outline the challenges and chances of CAPode-related techniques.
文摘A comprehensive investigation was conducted to explore the degradation mechanism of leakage current in SiC junction barrier Schottky(JBS)diodes under heavy ion irradiation.We propose and verify that the generation of stacking faults(SFs)induced by the recombination of massive electron-hole pairs during irradiation is the cause of reverse leakage current degradation based on experiments results.The irradiation experiment was carried out based on Ta ions with high linear energy transfer(LET)of 90.5 MeV/(mg/cm^(2)).It is observed that the leakage current of the diode undergoes the permanent increase during irradiation when biased at 20%of the rated reverse voltage.Micro-PL spectroscopy and PL micro-imaging were utilized to detect the presence of SFs in the irradiated SiC JBS diodes.We combined the degraded performance of irradiated samples with SFs introduced by heavy ion irradiation.Finally,three-dimensional(3D)TCAD simulation was employed to evaluate the excessive electron-hole pairs(EHPs)concentration excited by heavy ion irradiation.It was observed that the excessive hole concentration under irradiation exceeded significantly the threshold hole concentration necessary for the expansion of SFs in the substrate.The proposed mechanism suggests that the process and material characteristics of the silicon carbide should be considered in order to reinforcing against the single event effect of SiC power devices.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
基金Project supported by Leading innovation and entrepreneurship team of Zhejiang Province of China (Grant No.2021R01003)Science and Technology Innovation 2025 Major Project of Ningbo (Grant No.2022Z085)+2 种基金Ningbo 3315 Programme (Grant No.2020A-01-B)YONGJIANG Talent Introduction Programme (Grant No.2021A-038-B)Zhujiang Talent Programme (Grant No.2016LJ06C621)。
文摘Quantum dots(QDs)have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency,narrow half-peak width,and continuously adjustable emitting wavelength.QDs light emitting diodes(QLEDs)are expected to become the next generation commercial display technology.This paper reviews the progress of QLED from physical mechanism,materials,to device engineering.The strategies to improve QLED performance from the perspectives of quantum dot materials and device structures are summarized.
基金the National Natural Science Foundation of China(Grant No.62104085)the Innovation/Entrepreneurship Program of Jiangsu Province,China(Grant No.JSSCTD202146)。
文摘We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.
文摘Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum efficiency(EQE)of lead halide perovskites LEDs has been reported to exceed 20%[1].Even so,the toxicity of conventional lead has cast a gloomy shadow over their further application.
基金the National Natural Science Foundation of China (62234004,62175226)the National Natural Science Foundation of China (21961160720)+4 种基金the National Key Research and Development Program of China (2022YFA1204800)the University Synergy Innovation Program of Anhui Province (GXXT2022-009)the China Postdoctoral Science Foundation (2022M723006)the National Key Research and Development Program of China (2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02)。
文摘Metal-halide perovskites(MHPs)have emerged as a new class of semiconductors used in perovskite solar cells(PSCs)[1-5],perovskite light-emitting diodes(PeLEDs)[6-12],photo/X-ray detectors[13-16],and memristors[17,18].Pe LEDs can emit different light with high purity[19,20].
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3602703,2022YFB3606504,and 2022YFB3602903)National Natural Science Foundation of China(No.62122034)+3 种基金Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.2017KSYS007)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.ZDSYS201707281632549)Shenzhen Science and Technology Program(No.JCYJ20220818100411025)Shenzhen Development and Reform Commission Project(No.XMHT20220114005)。
文摘The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.